

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0774 of 28 January 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

TAB HE Concrete Screw

Mechanical fastener for use in concrete

TRUTEK Fasteners Polska Sp z o.o Al. Krakowski 38, Janki 05-090 RASZYN POLEN

Trutek Plant No. 5

15 pages including 3 annexes which form an integral part of this assessment

EAD 330232-00-0601

European Technical Assessment ETA-19/0774

Page 2 of 15 | 28 January 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-19/0774

Page 3 of 15 | 28 January 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The TAB HE Concrete Screw is an anchor made of galvanised steel of sizes 8, 10, 12, 14 and 16. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1 and C 2
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C 3
Displacements (static and quasi-static loading)	See Annex
	C 6
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 4 and C 5

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

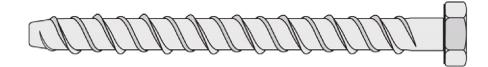
European Technical Assessment ETA-19/0774

Page 4 of 15 | 28 January 2020

English translation prepared by DIBt

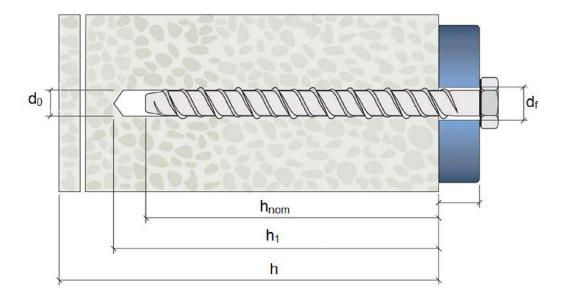
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

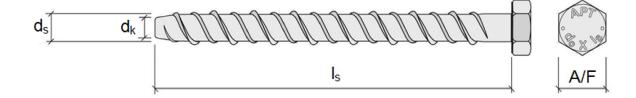

Issued in Berlin on 28 January 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider



TAB HE Concrete Screw:


Intended use

Concrete strength classes C20/25 to C50/60

TAB HE Concrete Screw	
Product description	Annex A1
Product and intended use	

- **Marking** Identifying mark of producer
- Nominal drill hole diameter
- Nominal anchor length

Table A1: **Materials**

Designation	Material
Concrete Screw	Carbon steel, heat treated and zinc plated

Table A2: **Dimensions**

Anchor size			8	10	12	14	16
Nominal anchor length	l _s	[mm]	80150	100150	100200	130200	150200
Outside diameter of thread	ds	[mm]	9,8	11,9	14,1	16,3	18,7
Core diameter	d _k	[mm]	7,5	9,5	11,4	13,4	15,3
Width across flats	A/F	[mm]	15	17	19	24	27

TAB HE Concrete Screw	
Product description Designation of anchor parts, materials and dimensions	Annex A2

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads: all sizes.
- Fire exposure: all sizes.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Non-cracked concrete and cracked concrete: all sizes.

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.).
- · Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, February 2018.

Installation:

- · Hole drilling by rotary hammer drilling mode: all sizes.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- · After installation further turning of the anchor must not be possible.
- The head of the anchor must be supported on the fixture and is not damaged.

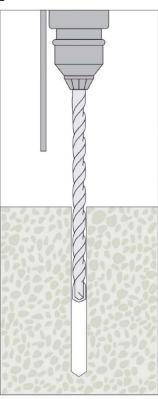
TAB HE Concrete Screw	
Intended Use Specifications	Annex B1

Table B1: Installation parameters

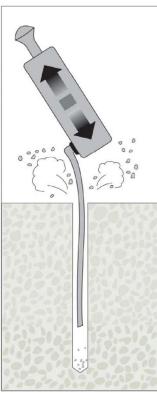
Anchor size			8	10	12	14	16
Overall anchor embedment depth	h _{nom}	[mm]	75	85	95	110	120
Effective anchorage depth	h _{ef}	[mm]	55	62	69	79	86
Nominal drill hole diameter	d ₀	[mm]	8	10	12	14	16
Drill hole depth	h ₀	[mm]	90	100	110	130	145
Outside diameter of the anchor	d _{nom}	[mm]	10	12	14	16	18
Clearance hole in the fixture	d _f	[mm]	12	14	16	18	20
Setting torque	T _{inst}	[Nm]	40	60	80	90	100

Table B2: Minimum thickness of concrete member, minimum spacing and edge distance

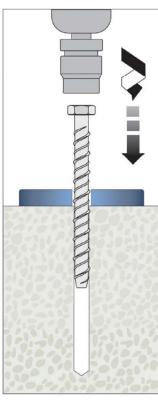
Anchor size		8	10	12	14	16	
Minimum thickness of concrete member	h _{min}	[mm]	120	125	140	170	190
Minimum spacing	S _{min}	[mm]	50	60	70	80	90
Minimum edge distance	C _{min}	[mm]	50	60	70	80	90


In case of fire attack from more than one side: $c_{min} \ge 300 \text{ mm}$

TAB HE Concrete Screw	
Intended Use Installation parameters, minimum thickness of concrete member, minimum spacing and edge distance	Annex B2



Installation instructions


1

2

3

- 1. Drill hole to correct diameter and depth using rotary hammer drilling machine
- 2. Remove dust from hole by blowing 3 times
- 3. Install anchor using electrical impact screwdriver Bosch GDS18E or Makita 6905H. Other electrical screwdrivers of equivalent force and performance may be used.

TAB HE Concrete Screw

Intended Use

Installation instructions

Annex B3

Table C1: Characteristic values of resistance under tension loads in non-cracked concrete

Anchor size			8	10	12	14	16
Installation factor	γ_{inst}	[-]	1,2				
Steel failure							
Characteristic resistance	N _{Rk,s}	[kN]	44,2	70,1	101,2	140,0	183,9
Partial factor	γ _{MS} ¹⁾	[-]			1,4		
Pullout failure	•						
Characteristic resistance	N _{Rk,P}	[kN]	12	16	20	35	40
		C30/37	1,17 1,22			22	
Increasing factor for N _{Rk,P}	Ψ _C C40/50 1,32			1,41			
		C50/60	1,42 1,55			55	
Factor for uncracked concrete	k _{ucr}	[-]			11,0		
Concrete cone failure							
Effective anchoring depth	h _{ef}	[mm]	55	62	69	79	86
Spacing	S _{cr,N}	[mm]	3 h _{ef}				
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}				
Splitting failure							
Spacing	S _{cr,sp}	[mm]	176	190	214	250	260
Edge distance	C _{cr,sp}	[mm]	88	95	107	125	130

¹⁾ In absence of other national regulations.

TAB HE Concrete Screw	
Performances Characteristic values of resistance under tension loads in non-cracked concrete	Annex C1

Table C2: Characteristic values of resistance under tension loads in cracked concrete

Anchor size			8	10	12	14	16
Installation factor	γ_{inst}	[-]	1,2				
Steel failure							
Characteristic resistance	N _{Rk,s}	[kN]	44,2	70,1	101,2	140,0	183,9
Partial factor	γ _{MS} ¹⁾	[-]			1,4		
Pullout failure	-						
Characteristic resistance	N _{Rk,P}	[kN]	7,5	12	16	20	25
		C30/37	1,17 1,22			22	
Increasing factor for N _{Rk,P}	Ψс	C40/50	1,32 1,41			41	
		C50/60	1,42 1,55			55	
Factor for cracked concrete	k _{cr}	[-]			7,7		
Concrete cone failure							
Effective anchoring depth	h _{ef}	[mm]	55	62	69	79	86
Spacing	S _{cr,N}	[mm]	3 h _{ef}				
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}				
Splitting failure							
Spacing	S _{cr,sp}	[mm]	176	190	214	250	260
Edge distance	C _{cr,sp}	[mm]	88	95	107	125	130

¹⁾ In absence of other national regulations.

TAB HE Concrete Screw	
Performances	Annex C2
Characteristic values of resistance under tension loads in cracked concrete	

Table C3: Characteristic values of resistance under shear loads in cracked or non-cracked concrete

Anchor size			8	10	12	14	16
Steel failure without level arm							
Characteristic resistance	V _{Rk,s}	[kN]	28,5	46,4	57,2	80,4	84,4
Ductility factor	k ₇	[-]			0,8		
Partial factor	Y ms ¹⁾	[-]	1,5				
Steel failure with level arm							
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	40 80 138 224 338				338
Partial safety factor	γ _{MS} ¹⁾	[-]			1,5		
Concrete pry out failure							
k-Factor	k ₈	[mm]	1,0		2.	,0	
Concrete edge failure							
Effective length of anchor in shear loading	I _f	[mm]	55	62	69	79	86
Effective external diameter of anchor	d_{nom}	[mm]	10	12	14	16	18

¹⁾ In absence of other national regulations.

TAB HE Concrete Screw	
Performances Characteristic values of resistance under shear loads in cracked or non-cracked concrete	Annex C3

Table C4: Characteristic values for tension load under fire exposure in cracked or non-cracked concrete C20/25 to C50/60

Anchor size			8	10	12	14	16		
Steel failure	Steel failure								
	R30	$N_{Rk,s,fi}$	[kN]	0,4	1,1	2,0	2,8	3,7	
	R60	N _{Rk,s,fi fi}	[kN]	0,4	0,9	1,5	2,1	2,8	
Characteristic resistance	R90	$N_{Rk,s,fi}$	[kN]	0,3	0,7	1,3	1,8	2,4	
	R120	$N_{Rk,s,fi}$	[kN]	0,2	0,6	1,0	1,4	1,8	
Pullout failure	•				•				
Characteristic resistance	R30 R60 R90	$N_{ m Rk,p,fi}$	[kN]	1,9	3,0	4,0	5,0	6,3	
	R120	$N_{Rk,p,fi}$	[kN]	1,5	2,4	3,2	4,0	5,0	
Concrete cone failure	•				•		•		
Characteristic resistance	R30 R60 R90	$N^0_{Rk,c,fi}$	[kN]	4,0	5,4	7,1	10,0	12,3	
	R120	N ⁰ _{Rk,c,fi}	[kN]	3,2	4,4	5,7	8,0	9,9	
Characteristic spacing	5	s _{cr,N} [mm]			4 x h _{ef}				
Edge distance	C	cr,N	[mm]	m] 2 x h _{ef}					

TAB HE Concrete Screw	
Performances Characteristic values for tension load under fire exposure in cracked and non-cracked concrete C20/25 to C50/60	Annex C4

Table C5: Characteristic values for shear load under fire exposure in cracked or non-cracked concrete C20/25 to C50/60

Anchor size				8	10	12	14	16
Steel failure without level arm	_							
	R30	$V_{Rk,s,fi}$	[kN]	0,4	1,1	2,0	2,8	3,7
Characteristic resistance	R60	$V_{Rk,s,fi}$ fi	[kN]	0,4	0,9	1,5	2,1	2,8
Characteristic resistance	R90	$V_{Rk,s,fi}$	[kN]	0,3	0,7	1,3	1,8	2,4
	R120	$V_{Rk,s,fi}$	[kN]	0,2	0,6	1,0	1,4	1,8
Steel failure with level arm								
	R30	M ⁰ _{Rk,s,fi}	[Nm]	0,5	1,5	3,4	5,6	8,4
Characteristic resistance	R60	M ⁰ _{Rk,s,fi}	[Nm]	0,4	1,3	2,6	4,2	6,3
	R90	M ⁰ _{Rk,s,fi}	[Nm]	0,3	1,0	2,2	3,6	5,5
	R120	$M^0_{Rk,s,fi}$	[Nm]	0,2	0,8	1,7	2,8	4,2
Concrete pryout failure								
k-Factor		k ₈	[-]	1,0		2	,0	
Characteristic resistance	R30 R60 R90	$V_{Rk,cp,fi}$	[kN]	4,0	10,9	14,2	20,0	24,7
	R120	$V_{Rk,cp,fi}$	[kN]	3,2	8,7	11,4	16,0	19,8

Concrete edge failure

The initial value $V^0_{Rk,c,fi}$ of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:

$$V_{Rk,c,fi}^0 = 0.25 \times V_{Rk,c}^0 (\leq R90)$$

$$V_{Rk,c,fi}^0 = 0.20 \times V_{Rk,c}^0 (\leq R120)$$

With $V_{Rk,c}^0$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

 $V^0_{Rk,c}$ = characteristic resistance for concrete edge failure in cracked concrete C20/C25 under normal temperature calculated acc. to EN 1992-4:2018.

TAB HE Concrete Screw	
Performances Characteristic values for shear load under fire exposure in cracked or non-cracked concrete C20/25 to C50/60	Annex C5

Table C6: Displacements under tension load

Anchor size		8	10	12	14	16	
Tension load	N	[kN]	4,8	6,3	7,9	13,9	15,9
Dicalacoment	δ_{N0}	[mm]	0,17	0,21	0,23	0,73	0,46
Displacement	δ _{N∞}	[mm]	1,75	1,88	1,82	1,54	0,96

Table C7: Displacements under shear load

Anchor size		8	10	12	14	16	
Shear load	V	[kN]	11,3	18,4	22,7	31,9	33,5
Displacement	δ_{V0}	[mm]	1,61	1,53	1,94	2,74	2,66
Displacement	δ _{V∞}	[mm]	2,42	2,30	2,92	4,10	3,99

TAB HE Concrete Screw	
Performances Displacements	Annex C6