

European Technical Assessment

ETA-19/0276 of 31/12/2019

General Part

fax: (+48 22) 825-52-86

www.itb.pl

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

TF Throughbolt

Torque controlled expansion anchor of sizes M8, M10, M12, M16 and M20 for use in uncracked concrete

TRUTEK Fasteners Polska Sp. z o.o. Al. Krakowska 38, Janki 05-090 Raszyn Poland

Plant 6

12 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document EAD 330232-00-0601 "Mechanical fasteners for use in concrete"

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The TF Throughbolt anchor in the sizes M8, M10, M12, M16 and M20 is made of galvanized steel. The anchor is placed into a drill hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Annex C are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading), displacements	Annex C1
Characteristic resistance to shear load (static and quasi-static loading), displacements	Annex C2

3.1.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchors satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.2 Methods used for the assessment

The assessment of the products has been made in accordance with the European Assessment Document EAD 330232-00-0601 "Mechanical fasteners for use in concrete".

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance applies (see Annex V to Regulation (EU) No 305/2011).

Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 31/12/2019 by Instytut Techniki Budowlanej

Anna Panek, MSc
Deputy Director of ITB

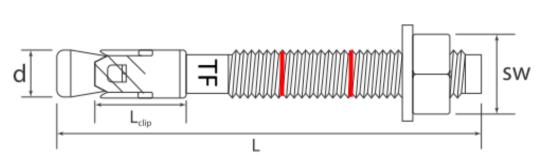


Table A1: TF Throughbolt anchor dimensions

	Type of anchor			d	L	L_{clip}	sw
Size	Marking	t _{fix,STD} 1) [mm]	t _{fix,RED} 2) [mm]	[mm]	[mm]	[mm]	[mm]
M8	TF08	1 – 135	1 – 145	8	55 – 200	15,3	13
M10	TF10	1 – 145	1 – 155	10	65 – 220	17,9	17
M12	TF12	1 – 180	1 – 200	12	80 – 280	21,3	19
M16	TF16	1 – 175	1 – 195	16	105 – 300	24,4	24
M20	TF20	1 – 155	5 – 175	20	130 – 300	28,6	30

¹⁾ thickness of the fixed element for standard effective anchorage depth

Marking:

Marking on the bolt: "TF / 0X"

where:

"X" - represents diameter of the anchor

For example: TF / 08

TF Throughbolt	Annex A1 of European
Product description Dimensions and marking	Technical Assessment ETA-19/0276

²⁾ thickness of the fixed element for reduced effective anchorage depth

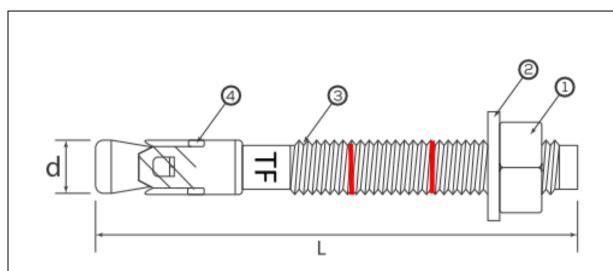


Table A2: Materials

Part	Designation	Material	Coating
1	Hexagon nut	EN ISO 898-2 carbon steel class 8 / DIN 934 / AISI 1008	
2	Washer	DIN 125 or EN ISO 7089	Zinc plated ≥ 5 µm
3	Bolt	Q195 Cold-formed steel	EN ISO 4042
4	Expansion sleeve	f _{uk} ≥ 400 MPa f _{yk} ≥ 320 MPa	

TF Throughbolt	Annex A2 of European		
Product description	Technical Assessment		
Materials	ETA-19/0276		

Specification of intended use

Anchorages subject to:

Static and quasi-static loads.

Base material:

- Reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at maximum according to EN 206.
- Uncracked concrete.

Use conditions (environmental conditions):

Structures subject to dry internal conditions.

Design:

- The anchorages under static loads and quasi-static loads are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055, under the responsibility of an engineer experienced in anchorages and concrete work.
- The position of the anchor is indicated on the design drawings.
- Verifiable calculation notes and drawings are taking account of the loads to be transmitted.

Installation of anchors:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor.
- Anchor installation in accordance with the manufacturer's specification and drawings and using the appropriate tools.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply.
- Check of concrete being well compacted, e.g. without significant voids.
- Effective anchorage depth, edge distances and spacings not less than the specified values without minus tolerances.
- Positioning of the drill holes without damaging the reinforcement.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of the torque moment using a calibrated torque wrench.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

TF Throughbolt	Annex B1
Intended use Specifications	of European Technical Assessment ETA-19/0276

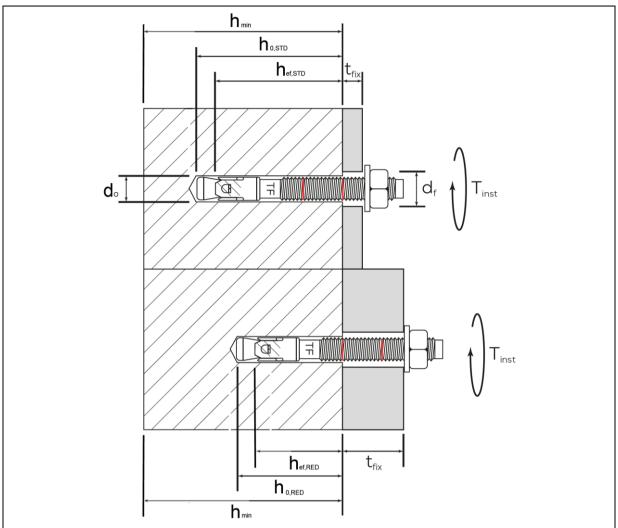
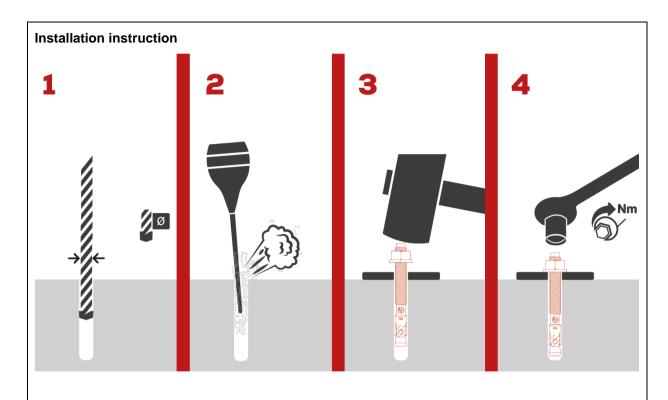



Table B1: Installation parameters

Anchor size		M8	M10	M12	M16	M20
Effective anchorage depth (standard)	$h_{ef,STD} = [mm]$	45	50	70	85	100
Effective anchorage depth (reduced)	$h_{ef,RED} = [mm]$	35	40	50	65	80
Nominal drill hole diameter	$d_o = d_{cut} = [mm]$	8	10	12	16	20
Depth of drill hole (standard)	$h_{0,STD} \ge [mm]$	53	58	80	99	110
Depth of drill hole (reduced)	$h_{0,RED} \ge [mm]$	43	48	60	70	90
Diameter of clearance hole in the fixture	$d_f \leq [mm]$	9	12	14	18	22
Installation torque	$T_{inst} = [Nm]$	25	35	60	120	200
Minimum thickness of member	$h_{min} = [mm]$	100	100	140	170	200
Minimum spacing	$s_{min} = [mm]$	35	40	50	65	80
Minimum edge distance	$c_{min} = [mm]$	35	40	50	65	80

TF Throughbolt	Annex B2 of European
Intended use	Technical Assessment
Installation parameters	ETA-19/0276

TF Throughbolt	Annex B3 of European
Intended use	Technical Assessment
Installation instruction	ETA-19/0276

Table C1: Design method A, characteristic values for tension loads

Anchor size		M8	M10	M12	M16	M20	
Steel failure							
Characteristic resistance	N _{Rk,s} [kN]	14,6	23,2	33,7	62,8	98,0	
Modulus of elasticity	E _s [N/mm ²]			210 000			
Partial safety factor	$\gamma_{\text{Ms}}^{1)}$			1,5			
Pull-out failure			T	T			
Characteristic resistance in uncracked concrete C20/25 (standard depth)	N _{Rk,p,STD} [kN]	9,5	11	20	26	48	
Characteristic resistance in uncracked concrete C20/25 (reduced depth)	N _{Rk,p,RED} [kN]	9,5	9,5	12	24	34	
Installation safety factor	γinst ²⁾	1,0	1,0	1,0	1,2	1,2	
Increasing factor for concrete C30/37		1,22	1,22	1,22	1,22	1,22	
Increasing factor for concrete C40/50	Ψο	1,41	1,41	1,41	1,41	1,41	
ncreasing factor for concrete C50/60	-	1,55	1,55	1,55	1,55	1,55	
Concrete cone failure and splitting f	ailure		l .	l			
Effective anchorage depth (standard)	$h_{ef,STD} = [mm]$	45	50	70	85	100	
Effective anchorage depth (reduced)	$h_{\text{ef,RED}} = [mm]$	35	40	50	65	80	
Factor for uncracked concrete	$k_1^{(2)} = k_{ucr,N}^{(2)}$	11,0	11,0	11,0	11,0	11,0	
Spacing (standard depth)	S _{CF,N,STD} [mm]	135	150	210	255	300	
Edge distance (standard depth)	C _{CF,N,STD} [mm]	67,5	75	105	127,5	150	
Spacing (reduced depth)	S _{CF,N,RED} [mm]	105	120	150	195	240	
Edge distance (reduced depth)	C _{cr,N,RED} [mm]	52,5	60	75	97,5	120	
Characteristic resistance for splitting (standard depth)	$N^0_{Rk,sp,STD}^{2)}[kN]$	9,5	11	20	26	48	
Characteristic resistance for splitting (reduced depth)	$N^0_{Rk,sp,RED^2}[kN]$	9,5	9,5	12	24	34	
Spacing (standard depth)	Scr,sp,STD [mm]	135	150	210	255	300	
Edge distance (standard depth)	C _{cr,sp,STD} [mm]	67,5	75	105	127,5	150	
Spacing (reduced depth)	s _{cr,sp,RED} [mm]	105	120	150	195	240	
Edge distance (reduced depth)	Ccr,sp,RED [mm]	52,5	60	75	97,5	120	
nstallation safety factor	γ _{inst} ²⁾	1,0	1,0	1,0	1,2	1,2	

TF Throughbolt	Annex C1 of European
Performances Design method A, characteristic values for tension loads	Technical Assessment ETA-19/0276

¹⁾ in the absence of other national regulations 2) parameter for design according to EN 1992-4:2018

Table C2: Displacements under tension loads

Anchor size		M 8	M10	M12	M16	M20
Tension load	N [kN]	4,5	4,6	6,1	10,8	14,8
Displacement	δ_{NO} [mm]	2,0	1,00	1,6	1,0	0,4
	δ _{N∞} [mm]	0,6	0,6	0,6	0,6	0,6

TF Throughbolt	Annex C1 of European Technical Assessment ETA-19/0276	
Performances Design method A, characteristic values for tension loads, displacements		

Table C3: Design method A, characteristic values for shear loads

Anchor size		M8	M10	M12	M16	M20
Steel failure without lever arr	n					<u> </u>
Characteristic resistance	$V^0_{Rk,s^2}[kN]$	7,3	11,6	16,9	31,4	49,0
Ductility factor	k7 ²⁾	0,8	0,8	0,8	0,8	0,8
Partial safety factor	γ _{Ms} ¹⁾	1,25	1,25	1,25	1,25	1,25
Steel failure with lever arm						
Characteristic bending resistance	M ⁰ Rk,s [Nm]	15,0	29,9	52,4	133,2	259,6
Partial safety factor	γ _{Ms} ¹⁾	1,25	1,25	1,25	1,25	1,25
Concrete pry-out failure						
Concrete pry-out failure factor	k ₈ ²⁾	1,0	1,0	2,0	2,0	2,0
Partial safety factor	γ _{Mc} 1)	1,5	1,5	1,5	1,8	1,8
Concrete edge failure						
Effective length of anchor under shear loading (standard depth)	I _{f,STD} [mm]	45	50	70	85	100
Effective length of anchor under shear loading (reduced depth)	I _{f,RED} [mm]	35	40	50	65	80
Effective diameter of anchor	d _{nom} [mm]	8	10	12	16	20
Partial safety factor	γ _{Mc} 1)	1,5	1,5	1,5	1,8	1,8

²⁾ parameter for design according to EN 1992-4:2018

Table C4: Displacements under shear loads

Anchor size		M8	M10	M12	M16	M20
Shear load	V [kN]	4,2	6,6	9,7	18,0	28,0
Dianlagament	δ_{VO} [mm]	1,4	1,3	1,2	2,1	1,5
Displacement	δ _{V∞} [mm]	2,1	1,9	1,8	3,2	2,3

TF Throughbolt	Annex C2
Performances Design method A, characteristic values for shear loads, displacements	of European Technical Assessment ETA-19/0276