

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-23/0051 of 2023/02/14

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product: TCM PRO+

Product family to which the above construction product belongs:

Bonded injection type anchor for use in concrete: sizes M8 to M24, rebar 8 to 25 mm

Manufacturer:

Trutek Fasteners Polska Sp z o.o.

Al. Krakowska 38

Janki

PL-05-090 Raszyn Tel. +48 22 701 93 24 Fax +48 22 100 58 82

Internet <u>www.trutek.com.pl</u>

Manufacturing plant:

Trutek Fasteners Polska Sp z o.o.

Factory Plant 1

This European Technical Assessment contains:

20 pages including 14 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete"

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The TCM PRO+ is a bonded anchor (injection type) for concrete consisting of a cartridge with Trutek injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M24 or a reinforcing bar in the range of diameter 8 to 25mm.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Other Basic Requirements are not relevant.

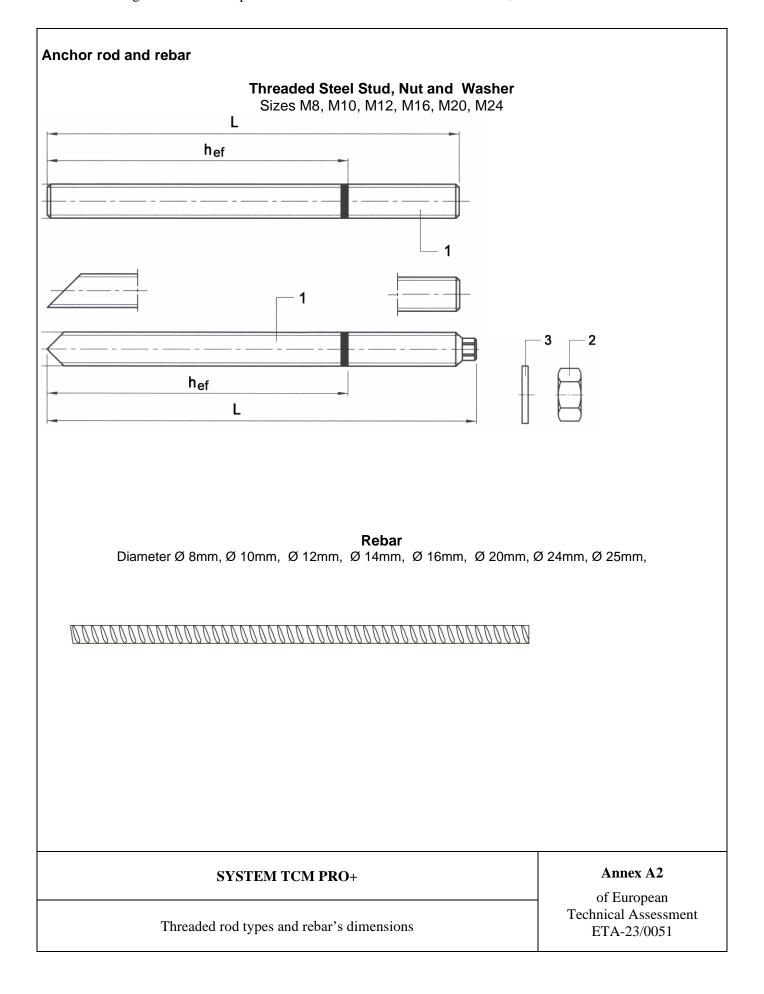
3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete" option 1 and 7.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2023-02-14 by

Thomas Bruun Managing Director, ETA-Danmark

Cartridge: TCM PRO+ A) Foil Bag Cartridge 165ml, 300ml. Coaxial Cartridge 380ml / 400 ml / 410 ml / 420ml B) C) Side by Side Cartridge 345ml, 825ml Cartridge Print: TCM PRO+ A) Including - Installation procedure, Production Batch code, Expiry Date, Storage conditions, Health & Safety warning, Gel & Cure time according to temperatures. \$III B) C) Marking: TCM PRO+ Batch code, either expiry date or manufacturing date with shelf life Mixer with hanger **Mixer** Annex A1 **SYSTEM TCM PRO+** of European Technical Assessment Product and intended use ETA-23/0051

Installed Anchor and Intended Use

Table A1: Installation details for anchor rods

Anchor size			M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Range of anchorage depth hef	min	[mm]	60	60	70	80	90	100
and bore hole depth h₀	max	[mm]	96	120	144	192	240	288
Nominal diameter of drill bit	d _o	[mm]	10	12	14	18	22	28
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26
Maximum torque moment	T _{max}	[Nm]	10	12	20	40	70	90
Minimum thickness of concrete member	h _{min}	[mm]		+ 30m 100mn		h _{ef} + 2d _o		0
Minimum spacing	Smin	[mm]	40	40	60	75	95	115
Minimum edge distance	Cmin	[mm]	35	40	45	50	60	65

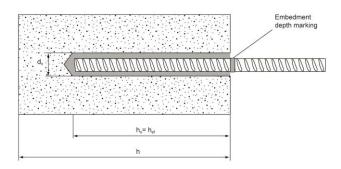


Table A2: Installation details for rebar

Rebar size (mm)			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 24	ф 25
Diameter of element	d	[mm]	8	10	12	14	16	20	24	25
Range of anchorage depth hef	min	[mm]	60	60	70	75	80	90	100	100
and bore hole depth ho	max	[mm]	96	120	144	168	192	240	288	300
Nominal diameter of drill bit	Do	[mm]	10/12	12/14	14/16	16/18	20	25	28	30
Minimum thickness of concrete member	h _{min}	[mm]		+ 30m 100mn		h _{ef} + 2d _o				
Minimum spacing	Smin	[mm]	40	50	60	70	80	100	120	120
Minimum edge distance	C_{min}	[mm]	40	50	60	70	80	100	120	120

SYSTEM TCM PRO+	Annex A3
Installation details for threaded studs and rebar	of European Technical Assessment ETA-23/0051

Table A3: Threaded rod and rebar materials

Designation	Material						
Threaded rods made of zinc coated steel							
	Strength class 4.6 to 12.9 EN ISO 898-1						
Threaded rod M8 – M24	Steel galvanized ≥ 5µm EN ISO 4042						
	Hot dipped galvanized ≥ 45µm EN ISO 10684						
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684						
Ni.4	Strength class 8 EN ISO 898-2						
Nut	Steel galvanized ≥ 5µm EN ISO 4042						
EN ISO 4032	Hot dipped galvanized ≥ 45µm EN ISO 10684						
Threaded rods made of st	ainless steel						
Threaded rod M8 – M24	Strength class 50, 70 or 80 EN ISO 3506;						
Threaded rod M8 – M24	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 end 10088						
Washer	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 end 10088						
ISO 7089	Stairliess steel 1.4401, 1.4404, 1.4576, 1.4571, 1.4459, 1.4502 end 10066						
Nut	Strength class 70 and 80 EN ISO 3506-1;						
EN ISO 4032	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 end 10088						
Threaded rods made of hi	gh corrosion resistant steel						
	Strength class 70 or 80						
Threaded rod M8 – M24	$R_m = 800 \text{ N/mm}^2$; $R_{p0,2}=640 \text{ N/mm}^2$						
	High corrosion resistant steel 1.4529, 1.4565 EN 10088						
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088						
ISO 7089							
Nut	Strength class 70 EN ISO 3506-2;						
EN ISO 4032	High corrosion resistant steel 1.4529, 1.4565 EN 10088						
Rebars							
Rebars $\phi 8$ to $\phi 25$	class B and C of characteristic yield strength fyk from 400 MPa to 600 MPa						

SYSTEM TCM PRO+	Annex A4
Materials	of European Technical Assessment ETA-23/0051

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads: M8 to M24, Rebar Ø8 to Ø25

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and non-cracked concrete: M8 to M24. Rebar Ø8 to Ø25.

Temperature Range:

• I: -40 °C to +40 °C (max long-term temperature +24 °C and max short -term temperature +40 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A4, Table A1: CRC II
 - Stainless steel A4 according to Annex A4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A4, Table A1: CRC V (for marine environment)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The Anchorages are designed in accordance with:
 - EN 1992-4:2018
 - Technical Report TR055, edition 2018

Installation:

- Dry and wet concrete.
- Flooded holes (not sea water).
- Hole drilling by hammer drilling (HD) or compressed air drilling (CD) used in Category 1 (dry and wet concrete) and Category 2 (flooded holes)
- Hole drilling by hollow drill bits for dust free drilling (HDB) (e.g. Bosch self-cleaning system including vacuum cleaner) used in Category 1 – dry and wet concrete
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

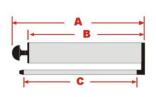

SYSTEM TCM PRO+	Annex B1
Intended use - Specification	of European Technical Assessment ETA-23/0051

Table B1: Installation data

Threaded rod	Size	Nominal drill bit diameter d _o (mm)	Steel Brush	Cleaning methods			
and rebar	Size			Hollow drilling with vacuum cleaner (HDB)	Manual cleaning (MAC)	Compressed air cleaning (CAC)	
	M8	10	10 mm		h _{ef} ≤ 80 mm		
Studs	M10	12	12 mm		h _{ef} ≤ 100 mm		
	M12	14	14 mm	No cleaning	h _{ef} ≤ 120 mm	Yes	
	M16	18	18 mm	needed	h _{ef} ≤ 160 mm		
	M 20	22	22 mm		h _{ef} ≤ 200 mm		
	M 24	28	28 mm		h _{ef} ≤ 240 mm		
	ϕ 8 mm	10 or 12	10 or 12 mm		h _{ef} ≤ 80 mm		
	ϕ 10 mm	12 or 14	12 or 14 mm		h _{ef} ≤ 100 mm		
Rebar	φ 12 mm	14 or 16	14 or 16 mm	Nia alaasias	h _{ef} ≤ 120 mm		
***************************************	ϕ 14 mm	16 or 18	16 or 18 mm	No cleaning	h _{ef} ≤ 140 mm	Yes	
THE CONTRACTOR OF THE CONTRACT	φ 16 mm	20	20 mm	needed	h _{ef} ≤ 160 mm	168	
	φ 20 mm	24	24 mm		h _{ef} ≤ 200 mm		
	φ 24 mm	28	28 mm		h _{ef} ≤ 240 mm	1	
	φ 25 mm	30	30 mm		h _{ef} ≤ 250 mm		

Manual Cleaning (MAC):

Hand pump recommended for Blowing out bore holes with diameters d₀≤ 24 mm and bore holes depth h₀≤10d

Compressed air cleaning (CAC):

Recommended air nozzle with an Orifice opening of minimum 3,5mm in diameter.

Hollow Drilling and Vacuum (HDB) (e.g. Bosch®)

Steel brush just for manual cleaning and CAC (not needed for HDB)

SYSTEM	TCM	PRO+
	1 0111	110

Intended use – data

Annex B2

of European Technical Assessment ETA-23/0051

Table B2: Minimum curing time

Minimum base material temperature C°	Gel time (working time) In dry/wet concrete	Curing time in dry concrete	Curing time in wet concrete or flooded holes
$0^{\circ}C \leq T_{\text{base material}} < 10^{\circ}C$	20 min	90 min	180 min
$10^{\circ}C \le T_{\text{base material}} < 20^{\circ}C$	9 min	60 min	120 min
20°C ≤ T _{base material} < 30°C	5 min	30 min	60 min
$30^{\circ}C \leq T_{\text{base material}} \leq 40^{\circ}C$	3 min	20 min	40 min

The temperature of the bond material must be ≥ 20°C

Resin injection pump details	Size Cartridge / Code	Type	
Image	165 / 300ml	Type Manual	
	345 / 380 / 400 / 410 / 420ml	Manual	
	165 / 300 / 345 / 380 / 400 / 410 / 420ml 7.4v Tool	Battery	
Bis	165 / 300 / 380 / 400 / 410 / 420ml	Drill Adaptor	
	380 / 400 / 410 / 420 / 825ml	Pneumatic	
SVSTEM TCM PRO+ Anney R3			

SYSTEM TCM PRO+	Annex B3
Intended use – data	of European Technical Assessment ETA-23/0051

Table B3 - parameters: drilling, hole cleaning and installation Instructions for use – Hammer drilling (HD) and Compressed air drilling (CD)							
Bore hole drilling		3()					
Drill hole in the substrate to the required embedment depth using the appropriately sized carbide drill bit.							
Bore hole cleani	ng Just before	setting an anchor, the bore hole must be free of d	ust and debris.				
a) Manual air cle	aning (MAC) fo	r all bore hole diameters d₀ ≤ 24mm and bore hole	depth h₀ ≤ 10d				
	X 4	The manual pump shall be used for blowing out be 24mm and embedment depths up to hef≤ 10d.	·				
		Blow out at least 4 times from the back of the bor needed.	e hole, using an extension if				
<u> </u>	Brush 4 times with the specified brush size (see Table B1) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.						
X 4 Blow out again with manual pump at least 4 times.							
b) Compressed a	air cleaning (CA	AC) for all bore hole diameters do and all bore hole	depths				
6 Bar	X 2	Blow 2 times from the back of the hole (if needed the whole length with oil-free compressed air (mir					
	Brush 2 times with the specified brush size (see Table B1) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.						
X 2 Blow out again with compressed air at least 2 times.							
SYSTEM TCM PRO+			Annex B3				
Procedure (1)			of European Technical Assessment ETA-23/0051				

Instructions for use - Hollow drill bits for dust free drilling Bore hole drilling and cleaning Select a suitable hollow drill bit (see table B1) and install it into the hammer drilling machine. Connect the dust extraction system to the aperture in the hollow drill bit. (e.g.: **Bosch**® system) Drill hole to the required embedment depth with the hammer drill set in rotation-hammer mode and with the dust extraction system working permanently at full power.

cleaning is not necessary when using the self-cleaning drilling method

Bore hole cleaning: M	anual cleaning is not necessary when using the self-cle	eaning drilling method.						
Table B4 - parameter	s: After cleaning injection and installation of th	ne stud/rebar						
•	Remove the threaded cap from the cartridge. necessary.	Cut open the foil bag if						
	Tightly attach the Tmixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer.							
	Insert the cartridge into the dispenser gun.							
×	Discard the initial trigger pulls of adhesive. Depending on the size of the cartridge, an initial amount of adhesive mix must be discarded. Each time when the mixer is changed, new discard of waste is needed until the colour is homogeneous. Discard quantities are 10 cm for all cartridges							
	Inject the adhesive starting at the back of the mixer with each trigger pull. Fill holes approximately 2/3 full, to ensure the anchor and the concrete is completely filled we embedment depth.	at the annular gap between the						
h _{ef}	Before use, verify that the threaded rod is dry Install the threaded rod to the required embertime t _{gel} has elapsed. The working time t _{gel} is	dment depth during the open gel						
t _{cure} T _{inst}	The anchor can be loaded after the required The applied torque shall not exceed the value							
	SYSTEM TCM PRO+	Annex B4 of European Tachnical Assessment						

Technical Assessment Procedure (2) ETA-23/0051

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Size				М8	M10	M12	M16	M20	M24		
Cross	section area	As	[mm ²]	36.6	58	84.3	157	245	353		
Char	acteristic tension resistance, Steel failure		1	ı		ı					
Steel,	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141		
Steel,	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176		
Steel,	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196 282			
Steel,	Property class 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353		
Steel,	Property class 12.9	$N_{Rk,s}$	[kN]	44	70	101	188	294 424			
Stainl	ess steel A2, A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177		
Stainl	ess steel A2, A4 and HCR, Property class 70	$N_{\text{Rk,s}}$	[kN]	26	41	59	110	171	247		
Stainl	ess steel A4 and HCR, Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282		
Char	acteristic tension resistance, Partial factor			•	•	•	•		•		
Steel,	Property class 4.6 and 5.6	γ _{Ms,N} 1)	[-]			2	,0				
Steel,	Property class 4.8, 5.8 and 8.8	γ _{Ms,N} 1)	[-]			1	,5				
Steel,	Property class 10.9 and 12.9	γ _{Ms,N} 1)	[-]			1	.4				
Stainl	ess steel A2, A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]			2,	86				
Stainl	ess steel A2, A4 and HCR, Property class 70	γ _{Ms,N} 1)	[-]			1,	87				
Stainl	ess steel A4 and HCR, Property class 80	γ _{Ms,N} 1)	[-]			1	,6				
Char	acteristic shear resistance, Steel failure										
	Steel, Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	7	12	17	31	49	71		
	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88		
Without lever arm	Steel, Property class 8.8	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141		
ever	Steel, Property class 10.9	$V^0_{Rk,s}$	[kN]	18	29	42	79	123	177		
out l	Steel, Property class 12.9	$V^0_{Rk,s}$	[kN]	22	35	51	94	147	212		
Vith	Stainless steel A2, A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88		
	Stainless steel A2, A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124		
	Stainless steel A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141		
	Steel, Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15	30	52	133	260	449		
	Steel, Property class 5.6 and 5.8	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560		
Ē	Steel, Property class 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	896		
With lever arm	Steel, Property class 10.9	$M^0_{Rk,s}$	[Nm]	37	75	131	333	649	1123		
i) H	Steel, Property class 12.9	$M^0_{\text{Rk},s}$	[Nm]	45	90	157	400	778	1347		
Š	Stainless steel A2, A4 and HCR, Property class 50	$M^0_{\text{Rk},s}$	[Nm]	19	37	66	167	325	561		
	Stainless steel A2, A4 and HCR, Property class 70	$M^0_{Rk,s}$	[Nm]	26	52	92	232	454	784		
	Stainless steel A4 and HCR, Property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896		
Char	acteristic shear resistance, Partial factor										
Steel,	Property class 4.6 and 5.6	γ _{Ms,V} 1)	[-]			1,	67				
	Property class 4.8, 5.8 and 8.8	γ _{Ms,V} 1)	[-]			1,	25				
Steel,	Property class 10.9 and 12.9	γ _{Ms,V} 1)	[-]			1,	50				
Stainl	ess steel A2, A4 and HCR, Property class 50	γ _{Ms,V} 1)	[-]			2,	38				
Stainl	ess steel A2, A4 and HCR, Property class 70	γ _{Ms,V} 1)	[-]			1,	56				
Stainl	ess steel A4 and HCR, Property class 80	γ _{Ms,V} 1)	[-]			1,	33				

¹⁾ in absence of national regulation

SYSTEM TCM PRO+	Annex C1 of European
Performance for static and quasi-static loads: Resistances	Technical Assessment ETA-23/0051

Table C2: Characteristic values of tension loads under static and quasi-static for threaded rods

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	
Steel failure									
Characteristic tension resistance	N _{Rk,s}	[kN]			see Tal	ble C1			
Partial factor	γ _{Ms,N}	[-]			see Tal	ble C1			
Combined Pull-out and Concrete cone failure ²⁾									
Characteristic bond resistance in concrete C20/2	5 – dry c	or wet con	crete for	hammer	drilling	(HD) and	CD		
Temperature range 40°C/24°C non-cracked concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9	8,5	
Temperature range 40°C/24°C cracked concrete	τ _{Rk,cr}	[N/mm²]	3,5	3,5	3	3,5	3,5	3,5	
Partial safety factor – dry or wet concrete	γinst	[-]		1,2			1,4		
Characteristic bond resistance in non-cracked co	ncrete C	20/25 – flo	oded ho	oles for h a	ammer d	lrilling (H	ID)		
Temperature range 40°C/24°C non-cracked concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	9	7,5	7	
Temperature range 40°C/24°C cracked concrete	TRk,cr	[N/mm²]	3,5	3,5	3	3,5	3	3	
Partial safety factor – flooded holes	γinst	[-]	1	,2		1,4	ļ		
Characteristic bond resistance in non-cracked concrete	e C20/25 -	- dry or we	t concrete	for hollo v	w drill bits	s (HDB) –	dust free	system	
Temperature range 40°C/24°C non-cracked concrete	τ _{Rk,ucr}	[N/mm²]	7	7	7.5	8	8	8.5	
Temperature range 40°C/24°C cracked concrete	τ _{Rk,cr}	[N/mm²]	3,5	3,5	4	3,5	3,5	3,5	
Partial safety factor – dry or wet concrete	γinst	[-]		•	1,2 1,4				
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked for hammer drilling		C30/37	1,08 1,0					1,00	
	ψc	C40/50		1,15					
in non-cracked for Harring		C50/60	1,20 1,0					1,00	
Increasing factor for $\tau_{Rk,\text{cr}}$ in cracked concrete for		C30/37	1,08			1,00			
hammer drilling	ψс	C40/50	1,15			1,00			
		C50/60	1,20			1,00			
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked concrete		C30/37			·	00			
for hollow drilling	ψс	C40/50 C50/60				00			
		C30/37	1,20		1,	1,00			
Increasing factor for $\tau_{\text{Rk},\text{cr}}$ in cracked concrete for	Ψc	C40/50	1,36			1,00			
hollow drilling	Ψ	C50/60	1,50			1,00			
Reduction factor in cracked or non-cracked concrete C20/25 for all drilling methods	ψ^0 sus	[-]		ı	0,7	794			
Factor for determination of the concrete cone failure	k _{ucr,N}	[-]	1	1,0 (based	d on concre	ete cylinder	strength f	·k)	
Factor for determination of the concrete cone failure	k _{cr,N}	[-]			7	,7			
Edge distance for concrete cone failure	C _{cr,N}	[mm]			1,5	h _{ef}			
Axial distance for concrete cone failure	Scr,N	[mm]			2 (Ccr,N			
SYSTEM TCM	PRO+	•				Anı	nex C2		

SYSTEM TCM PRO+

Annex C2

of European

Technical Assessment

ETA-23/0051

Table C2: continuation

Splitting failure ²⁾				
	h / h	n _{ef} ⁴⁾ ≥ 2,0	1,0 h _{ef}	h/h _{ef} 2,0
Edge distance c _{cr,sp} [mm] for	2,0 > h / hef ⁴⁾ > 1,3 3 hef - 1 h		3 h _{ef} - 1 h	1,3
	h /	h _{ef} ⁴⁾ ≤ 1,3	1,7 h _{ef}	1,0·h _{ef} 1,7·h _{ef} c _{cr,sp}
Spacing	S _{cr,sp}	[mm]		2 C _{cr,sp}

¹⁾ In absence of national regulations

Table C3: Displacements under tension load

	M8	M10	M12	M16	M20	M24	
a ⁵⁾ : 40°C / 24	l°C						
δ_{N0}	[mm/(N/mm ²)]	0,11	0,11	0,10	0,11	0,12	0,10
$\delta_{N\infty}$	[mm/(N/mm ²)]	0,28	0,18	0,82	0,76	0,22	0,30
		M8	M10	M12	M16	M20	M24
a ⁵⁾ : 40°C / 24	l°C						
splacement δ_{N0} [mm/(N/mm ²)]			0,12	0,15	0,14	0,14	0,13
Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]			0,19	0,38	0,52	0,14	0,19
	ing (HD) or α a ⁵ : 40°C / 24 δ _{N0} δ _{N∞} areaded rods HDB (dust-1 a ⁵): 40°C / 24 δ _{N0}	$\begin{array}{ccc} \delta_{N\infty} & [\text{mm/(N/mm^2)}] \\ \text{readed rods} \\ \text{HDB (dust-free system)} \\ \text{a}^{5)} \colon 40^{\circ}\text{C} / 24^{\circ}\text{C} \\ \delta_{N0} & [\text{mm/(N/mm^2)}] \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

⁵⁾ Explanation see annex B1

Table C4: Displacements under shear load for all types of drilling for threaded rods

TCM PRO+ with threa	aded rods		M8	M10	M12	M16	M20	M24
Displacement	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05

SYSTEM TCM PRO+	Annex C3 of European
Performance for static, quasi-static and seismic loads: Displacements	Technical Assessment ETA-23/0051

³⁾ Ex

³⁾ Explanations, see annex B1

²⁾ Calculation of concrete and splitting, see annex B1

⁴⁾ h concrete member thickness, hef effective anchorage depth

Гable С5: Characteri	istic valu	ies for st	teel ten	sion res	sistance	and te	nsion lo	ad valu	es for r	ebar
TCM PRO+ with rebar	•		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 24	ф 25
Steel failure										
Characteristic tension resistance	$N_{Rk,s}$	[kN]				,	$A_s \cdot f_{uk}^{1)}$			
Cross section area	As	[mm ²]	50	79	113	154	201	314	452	491
Partial safety factor	γMs,N ²⁾	[-]					1,4			
Combined Pull-out and	Concrete o	one failure	3)							
Diameter of rebar	d	[mm]	8	10	12	14	16	20	24	25
Characteristic bond resista	ance in non	-cracked co	ncrete C2	20/25 – dry	or wet co	ncrete for l	hammer d	rilling (HC) and CD	
Temperature range a 4): 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	6	6	6	5,5	5,5	5,5	5,5	5,5
Partial safety factor – dry or wet concrete	γinst ²⁾	[-]		1,2				1,4		
Characteristic bond resista	ance in non	-cracked co	ncrete C2	20/25 – floc	ded holes	for hamn	ner drilling	(HD) and	CD	
Temperature range a 4): 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	6	6	6	5,5	5,5	4,5	4,5	4,5
Partial safety factor – flooded holes	γinst	[-]	1,2 1,4							
Characteristic bond resista system	nce in non-	cracked cor	ncrete C2	0/25 – dry (or wet con	crete for h	ollow drill	bits (HDE	3) – dust f	ree
Temperature range a ⁴⁾ : 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	5	5	5,5	5,5	5,5	5,5	5,5	5,5
Partial safety factor – dry or wet concrete	γinst	[-]			1	,2			1	,4
Increasing factor for		C30/37	1,00	1,04		1,	.08		1,	13
TRk,ucr	Ψc	C40/50	1,00	1,07		1,	15		1,	23
in non-cracked concrete		C50/60	1,00	1,10		1,	20		1,	32
Factor for determination of the concrete cone failure	k _{ucr,N}	[-]			11,0 (base	d on concr	ete cylinder	strength for	۷)	
Factor for determination of the concrete cone failure	K _{cr,N}	[-]				7	7,7			
Splitting failure ³⁾										
	h / I	n _{ef} ⁵⁾ ≥ 2,0	1,0 h _{ef}							
Edge distance	2,0 > h / h _{ef} ⁵⁾ > 1,3		3 h _{ef} - 1 h			1,3				
c _{cr,sp} [mm] for	h /	h _{ef} ⁵⁾ ≤ 1,3	1,7	h _{ef}		1,3			C _{cr,sp}	
On a nin a		r., 1					1,0·h _{ef}	1,7 ⋅h _{ef}	,	
Spacing) f . shall be taken from th	Scr,sp	[mm]					2 C _{cr,sp}			

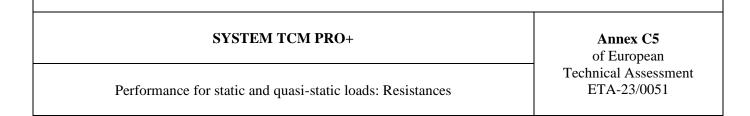
¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of national regulation 3) Calculation of concrete and splitting, see annex B1

⁴⁾ Explanations, see annex B1 5) h concrete member thickness, h_{ef} effective anchorage depth

SYSTEM TCM PRO+	Annex C4
Performance for static and quasi-static loads: Resistances	of European Technical Assessment ETA-23/0051

Table C6: Displacements under tension load for rebar

TCM PRO+ with rebar for hammer drilling (HD) and CD				ф 10	ф 12	ф 14	ф 16	ф 20	ф 24/ ф 25
Temperature range	a ⁴⁾ : 40°C /	24°C							
Displacement	δ_{N0}	$[mm/(N/mm^2)]$	0,03	0,03	0,04	0,04	0,07	0,07	0,10
Displacement	$\delta_{N\infty}$	$[mm/(N/mm^2)]$	0,11	0,11	0,15	0,21	0,26	0,26	0,38
TCM PRO+ with redust free system (llow drilling	ф 8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25
Temperature range	a ⁴⁾ : 40°C /	24°C							
Displacement δ_{N0} [mm/(N/mm ²)]			0,16	0,10	0,03	0,03	0,04	0,04	0,04
Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]				0,45	0,15	0,16	0,17	0,18	0,19


Table C7: Characteristic steel shear resistance for rebar

TCM PRO+ with rebar			ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	
Steel failure without lever arm										
Characteristic shear resistance	$V_{Rk,s}$	[kN]		0,50 • A _s • f _{uk} ¹⁾						
Cross section area	As	[mm ²]	50	79	113	154	201	314	491	
Partial safety factor	$\gamma_{\text{Ms,N}}^{2)}$	[-]				1,5				
Steel failure with lever arm										
Characteristic bending moment	M^0 Rk,s	[Nm]			1.	2 • W _{el} • f _u	k ¹⁾			
Elastic section modulus	Wel	[Nm]	50	98	170	269	402	785	1534	
Partial safety factor	γMs,N ²⁾	[-]				1,5				
Concrete pryout failure	-	-								
Factor	k ₈	[-]		1,0 2,0		r h _{ef} < 60n r h _{ef} ≥ 60n				
Partial safety factor	γмс	[-]				1,5				
Concrete edge failure										
Partial safety factor	γ _{Mc} ¹⁾	[-]				1,5				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulations

Table C8: Displacements under shear load for rebar

TCM PRO+ with	rebar		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25
Displacement	δ_{V0}	[mm/kN]	0,05	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,08	0,08	0,07	0,06	0,06	0,05	0,05

Table C9: Resistance to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	No performance assessed

Table C10: Reaction to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application, the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not contribute to fire growth or to the fully developed fire and they have no influence on the smoke hazard.

SYSTEM	TCM	DDO:
3 1 3 1 P. VI	1 (. V	PR()+

Performance for exposure to fire

Annex C6 of European Technical Assessment ETA-23/0051