

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-22/0353 of 2022/05/16

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	TCM MS PRO
Product family to which the above construction product belongs:	Bonded anchor with anchor rod made of galvanized steel or stainless steel of sizes M8, M10 and M12, for use in masonry
Manufacturer:	Trutek Fasteners Polska Sp. z o.o. Al. Krakowska 38, Janki PL-05-090 Raszyn e-mail: info@trutek.com.pl www.trutek.com.pl www.trutekfasteners.eu
Manufacturing plant:	Trutek Fasteners Plant No 1
This European Technical Assessment contains:	25 pages including 20 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	EAD 330076-00-0604 Metal injection anchors for use in masonry

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Injection system TCM MS PRO is a bonded anchor (injection type) consisting of a mortar cartridge with TCM MS PRO injection mortar, a perforated nylon sleeve, and an anchor rod with hexagon nut and washer in the range of M8, M10 and M12.

The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry.

An illustration of the product and intended use is given in Annex A1 and Annex A3.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A4, Table A1. For the installed anchor see Figure given in Annex A3. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (Masonry Group b) or hollow or perforated masonry (Masonry Group c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

The anchors may be installed in Condition w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

The anchors may be used in the following temperature range:

Ta: -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C),

Tb: -40° C to $+80^{\circ}$ C (max short term temperature + 80 °C and max long term temperature + 50 °C).

Elements made of galvanized steel or stainless steel may be used in structures subject to dry internal conditions only.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C5.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Other Basic Works Requirements are not relevant

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the EAD 330076-00-0604 Metal injection anchors for use in masonry, based on the Use Categories b and c in respect of the base material and Category w/d in respect of installation and use.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2022-05-16 by

Thomas Bruun Manager, ETA-Danmark

- A) Foil Bag Cartridge 165ml, 300ml
- B) Coaxial Cartridge 380ml, 400ml, 410ml
- C) Side by Side Cartridge 345ml, 825ml

Mixer (Standard / + Hanger)	
Threaded Steel Stud / Washer + Nut Sizes M8, M10, M12	
Perforated Nylon Sleeve Size 16/85	
Dint Cint	Dd
	Annex A2
Product and intended use (2)	of European Technical Assessment ETA-22/0353

Table A1: Threaded rod dimensions

Anchor size			M8	M10	M12
Diameter of anchor rod	d	[mm] =	8	10	12
Size of sleeve	$d_{nom} \ge l_s$	[mm] =		16 x 85	
Nominal anchorage depth	\mathbf{h}_{ef}	[mm] =		85	
Maximum diameter hole in fixture	d_{fix}	[mm]≤	9	12	14
Installation torque moment	Tinst	[Nm] =	2	2	2
Depth of drilled hole to deepest point	h_1	[mm] =		90	

Marking according EAD 330076-00-0604 Metal injection anchors for use in masonry. 1)

2) Effective anchorage depths according to the range specified in table 1.

Table A2: Threaded rods materials

Designation	Material		
Threaded rods made of zinc coated steel			
Strength class 4.6, 5.8, 6.8 EN ISO 898-1			
Threaded rod M8 – M12	Steel galvanized \geq 5µm EN ISO 4042		
	Hot dipped galvanized \geq 45µm EN ISO 10684		
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684		
	Strength class 8 EN ISO 898-2		
Nut EN ISO 4032	Steel galvanized \geq 5µm EN ISO 4042		
	Hot dipped galvanized \geq 45µm EN ISO 10684		
Threaded rods made of stainless steel			
Threaded rod M8 – M12	Strength class A4-70 and A4-80 EN ISO 3506-1;		
Washer ISO 7089	Strength class A4-70 and A4-80 EN ISO 3506-1;		
Nut EN ISO 4032	Strength class A4-70 and A4-80 EN ISO 3506-1;		

Commercial standard threaded rods with:

material and mechanical properties according to Table 2;
 confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;

_ marking of the threaded rod with the embedment depth.

TCM MS PRO	Annex A4
Threaded rod types, dimensions and materials	Technical Assessment ETA-22/0353

Table A3: Injection mortar				
Product	Composition			
TCM MS PRO	Additive: quartz Bonding agent: TCM MS PRO			
i wo components injection mortar	Hardener: dibenzoyl peroxide			

Table A4: Minimum curing time

Temperature in the concrete member	Minimum gelling time in dry conditions (mins)	Minimum load time in dry conditions (mins)
≥ - 5°C	40	180
$\geq +5^{\circ}C$	20	90
$\geq +15^{\circ}C$	9	60
$\geq +25^{\circ}C$	5	30
≥ +35°C	3	20

For wet conditions, the loading time must be doubled

TCM MS PRO

Materials and curing time

Annex A5

of European Technical Assessment ETA-22/0353

Plastic sleeve for hollow/perforated masonry: nominal dimensions and material

Resin sleeves are the effective way to create a fixing where there is a hollow void, such as for perforated bricks and blocks, or a more porous material for example blockwork. Resin is injected to fill the volume of the sleeve, and then forced through the fine perforations once the metal fixing rod is inserted. This distributes the resin material into the fixing cavity, forming a solid joint between the resin, the sleeve and the fixing.

Nylon Perforated Sleeve – 16 x 85

Nominal Diameter 16 mm

Nominal Length 85 mm

TCM MS PRO

Plastic sleeve

Annex A6 of European Technical Assessment ETA-22/0353 Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M12.

Base materials:

Solid masonry (Masonry Group b) or hollow or perforated masonry (Masonry Group c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

Temperature range:

The anchors may be used in the following temperature range: Ta: -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C), Tb: -40° C to $+80^{\circ}$ C (max short term temperature $+80^{\circ}$ C and max long term temperature $+50^{\circ}$ C).

Use conditions (Environmental conditions):

Threaded rods:

a) Carbon galvanized steel class 4.6, 5.8 or 6.8 according to EN ISO 898-1 for dry internal conditions.b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

Installation:

- Condition w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.
- Perforation with drilling machine

Proposed design methods:

- EOTA Technical Report 054, Design method A

TCM MS PRO

Annex B1

Intended use - Specification

of European Technical Assessment ETA-22/0353

Table B1 Installation data for solid masonry (brick n°1)*					
Size		M8	M10	M12	
Nominal drilling diameter	d ₀ [mm]	10	12	14	
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	
Embedment depth	h _{ef} [mm]	85 85 85		85	
Depth of the drilling hole	h ₁ [mm]	h _{ef} + 5 mm			
Torque moment	Tinst [Nm]	2 2		2	
Thickness to be	t _{fix,min} [mm]	> 0			
fixed	t _{fix,max} [mm]	< 1500			
Minimum spacing	S _{min} [mm]	255	255	255	
Minimum edge distance	C _{min} [mm]	127,5	127,5	127,5	

* Type of bricks are detailed in the Annex B9

Table B2: Installation data for hollow/perforated masonry (brick n° 2)*

Size		M8	M10	M12	
Plastic sleeve		16x85			
Nominal drilling diameter	d ₀ [mm]	16	16	16	
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	
Embedment depth	h _{ef} [mm]	85	85	85	
Depth of the drilling hole	h1 [mm]	h _{ef} + 5 mm			
Torque moment	T _{inst} [Nm]	2	2	2	
Thickness to be	t _{fix,min} [mm]		> 0		
fixed	t _{fix,max} [mm]		< 1500		
	S _{min} , [[mm]	560	560	560	
Minimum spacing	S _{min,} ⊥[mm]	200	200	200	
Minimum edge distance	C _{min} [mm]	100	100	100	

* Type of bricks are detailed in the Annex B9

TCM MS PRO

Annex B2

of European Technical Assessment ETA-22/0353

Intended use - data

	Resin injection nump details	
Image	Size Cartridge / Code	Туре
	165 / 300ml 300 ml 10:1	Manual
	345ml 345 ml 10:1	Manual
	380 / 410ml 380/410 ml 10:1	Manual
	165 / 300 / 345 / 380 / 410ml 300 ml 7.4v Tool 345 ml 7.4v Tool 380 ml 7.4v Tool	Battery
	TCM MS PRO	
Tools for injection		of European Technical Assessment ETA-22/0353

Instructions for use				
Bore hole drillin	ıg			
		Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.		
Bore hole cleani	ing Just before setti	ng an anchor, the bore hole must be free of dust and debris.		
a) Manual air clo	eaning (MAC)			
	X 4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust.		
• • 	X 4	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table B3) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.		
	X 4	Blow out again with manual pump at least 4 times until return air stream is free from noticeable dust.		
b) Compressed a	air cleaning (CAC)			
6 Bar	X 2	Blow 2 times from the back of the hole (if needed with a nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6m ³ /h) until return air stream is free from noticeable dust.		
~ → _()	X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table B3) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.		
6 Bar	X 2	Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.		
		1		
	,	ГСМ MS PRO	Annex B5	
	Procedu	re for solid masonry (1)	of European Technical Assessment ETA-22/0353	

Instructions for use				
	Remove the threaded cap from the cartridge. Cut th	e bag below the clip if appropriate.		
Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made su element is inside the mixer. Use only the supplied mixer with the adhesive.		mixer in any way. Made sure the mixing nixer with the adhesive.		
	Insert the cartridge into the dispenser. Press the rel insert the cartridge neatly into the cradle without ar	Insert the cartridge into the dispenser. Press the release trigger to retract the plunger and insert the cartridge neatly into the cradle without any distortion.		
X	Discard the initial trigger pulls 10cm of adhesive. Resin will flow from the cartridge as soon as dispensing is initiated.			
Instructions for use				
75%	Insert the nozzle to the bottom of the hole and in	ject the resin until the hole is filled 75%		
Insert the anchor, slowly with a slight twisting motion into the hole. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed				
	TCM MS PRO	Annex B6		
Proc	edure for solid masonry (2)	of European Technical Assessment ETA-22/0353		

Instructions for use					
Bore hole drillin	ıg				
		Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.			
Bore hole cleani	ng Just before setti	ng an anchor, the bore hole must be free of dust and debris.			
a) Manual air cle	eaning (MAC)				
	X 4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until r noticeable dust.	eturn air stream is free of		
 ⊙	X 4	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore ho the steel brush to the back of the hole (if needed with an exten removing it. The brush must produce natural resistance as it e brush is too small and must be replaced with the proper brush	ble Ø, see Table B3) by inserting sion) in a twisting motion and enters the bore hole. If not, the a diameter.		
	X 4	Blow out again with manual pump at least 4 times until return noticeable dust.	a air stream is free from		
b) Compressed a	air cleaning (CAC)				
6 Bar	X 2	Blow 2 times from the back of the hole (if needed with a nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6m ³ /h) until return air stream is free from noticeable dust.			
•••••	X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table B3) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.			
5 Bar	X 2	Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.			
	Annex B7 of European Technical Assessment ETA-22/0353				

Instructions for use	
t t	Remove the threaded cap from the cartridge. Cut the bag below the clip if appropriate.
+ - +	Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer with the adhesive.
	Insert the cartridge into the dispenser. Press the release trigger to retract the plunger and insert the cartridge neatly into the cradle without any distortion.
X	Discard the initial trigger pulls 10cm of adhesive. Resin will flow from the cartridge as soon as dispensing is initiated.

Instructions for use				
	Introduce the sleeve of suitable dimension (see table) to th collar is level with the hole face. The cap may be opened to	e back of the hole so that the allow full nozzle insertion.		
100%	Insert the nozzle to the end of the sleeve and inject the resi Close the cap.	n until the sleeve is 100% filled.		
······································	Insert the anchor, slowly with a slight twisting motion into the sleeve. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed			
]	Annex B8			
Procedure for hollow/perforated masonry (2)		of European Technical Assessment ETA-22/0353		

ESSENTIAL CHARA	CTERISTICS	PERFORMANCE					
Installation parameter	°S	M8	M10	M12			
d [mm]		8	10	12			
d ₀ [mm] category b (sol	id masonry)	10	12	14			
do [mm] category c (hol	low or perforated masonry)	16	16	16			
Type of plastic sleeve for	or use in category c	16x85	16x85	16x85			
d _{fix} [mm]		9	12	14			
h1 [mm]			$h_{ef} + 5 mm$				
te [mm]	Min		>0				
	Max		\leq 1500 mm				
Tinst [Nm] category b (s	olid masonry)	2	2	2			
T _{inst} [Nm] category c (hollow or perforated masonry)		2	2	2			
S _{min} [mm] category b (s	olid masonry)	255	255	255			
C _{min} [mm] category b (solid masonry)		127,5	127,5	127,5			
S _{min} [mm] category c (hollow masonry) S _{min,}		560	560	560			
S_{min} [mm] category c (h	ollow) S _{min,} ⊥	200	200	200			
Cmin [mm] category c (h	ollow masonry)	100	100	100			
* Resistance for tensile and shear load Temperature range -40°C/+40°C (T _{mlp} = 24°C)		M8	M10	M12			
Drink nº1 (solid)	N _{Rk} [kN]	2,5		•			
Drick II 1 (solid)	V _{Rk} [kN]	6,0					
Prick nº? (hollow)	N _{Rk} [kN]	0,75					
DIICK II 2 (IIOIIOW)	V _{Rk} [kN]		3,5				
* Resistance for tensile	e and shear load						
Temperature range -40°C to +80°C ($T_{mlp} = 50^{\circ}C$)		M8	M10	M12			
Prick nº1 (solid)	N _{Rk} [kN]		2,0				
DIICK II ⁻ I (SOIId)	V _{Rk} [kN]		6,0				
Prick nº2 (hollow)	N _{Rk} [kN]	0,6					
DITCK II \angle (HOHOW)	Vpl [kN]	3,5					

* For design according to EOTA Technical Report 054: $N_{Rk} = N_{Rk,p} = N_{Rk,pb} - \text{steel failure is not decisive}$ * For design according to EOTA Technical Report 054: $V_{Rk} = V_{Rk,b} - \text{steel failure without lever arm is not decisive} - V_{Rk,c}$ according to EOTA Technical Report 054: $V_{Rk} = V_{Rk,b} - \text{steel failure without lever arm is not decisive} - V_{Rk,c}$ according to EOTA Technical Report 054:

TCM MS PRO

Performance for static and quasi-static loads: Resistances

Annex C1 of European Technical Assessment ETA-22/0353

Table C2: Characteristic bending moments					
Size	M8	M10	M12		
Characteristic resistance with standard threaded rod grade 4.6	M _{Rk,s}	[Nm]	15	30	52
Partial safety factor	γ_{Ms}	[-]		1,67	
Characteristic resistance with standard threaded rod grade 5.8	M _{Rk,s}	[Nm]	19	37	66
Partial safety factor	γ _{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod grade 6.8	M _{Rk,s}	[Nm]	22	45	79
Partial safety factor	γ_{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod stainless steel A4-70 (class 70)	M _{Rk,s}	[Nm]	26	52	92
Partial safety factor	γ _{Ms}	[-]		1,56	
Characteristic resistance with standard threaded rod stainless steel A4-80 (class 80)	M _{Rk,s}	[Nm]	30	60	105
Partial safety factor	γ_{Ms}	[-]		1,33	

TCM MS PRO

Performance for static and quasi-static loads: Resistances

Annex C2 of European Technical Assessment ETA-22/0353

ESSENTIAL CHARACTERISTICS			PERFORMANCE				
* Resistance for tensile and shear load Temperature range -40°C/+40°C ($T_{mlp} = 24^{\circ}C$) and -40°C to +80°C ($T_{mlp} = 50^{\circ}C$)				M8	M10	M12	
γ _{Mm} [-] Category w/d					2,50		
Brick n°1	$S_{cr,N}[n]$	ım]		255	255	255	
Dick II 1	$C_{cr,N}[n]$	nm]		127,5	127,5	127,5	
	S _{cr,N,}	[mm]		560	560	560	
Brick n°2	$S_{cr,N} \perp$	$S_{cr,N} \perp [mm]$		200	200	200	
<u> </u>	$C_{cr,N}[n]$	nm]		100	100	100	
p coefficient for in situ ter Tomporature range: 40°	ST (EOTA	. 053)		M8	M10	M12	
Brick Nº 1 - Solid brick	C/+40 C		ß [_1		0.57		
Brick Nº 2 - French Brick			<u>β[-</u>]		0.60		
β coefficient for in situ te	st (EOTA	TR 053)	ΡĻJ		0,00	2610	
Temperature range: -40°	C/+80°C	,		M8	M10	M12	
Brick Nº 1 - Solid brick			β[-]		0,45		
Brick Nº 2 - French Brick			β [-]		0,47		
Displacement under serv Tensile load	ice load						
Temperature range -40°(C/+40°C ($T_{mlp} = 24^{\circ}$	C)	Mo	N/10	N(10	
Brick n° I – Solid Drick	toncilo	E []-NI		NI8	0.71	M12	
Admissible service load in	tensile	F [KIN]		0,71			
Displacement		Sy [mm]		0,02			
		ON∞ [IIIIII]		MQ	0,03 M10	M12	
Brick n°2 – Hollow/perfo	rated bri	ck		With sleeve	With sleeve	With sleeve	
Admissible service load in	tensile	F [kN]			0,21		
		δ_{N0} [mm]		0,03			
Displacement S.		$\delta_{N\infty}$ [mm]		0.05			
Displacement under serv Tensile load	ice load	01(00 []			.,		
Temperature range -40°C	C to +80°	$C(T_{mlp} = 5)$	0°C)				
Brick n°1 – Solid brick				M8	M10	M12	
Admissible service load in	tensile	F [kN]		0.57			
		δ _{N0} [mm]		0.03			
Displacement		δ _M [mm]		0,05			
		oN∞[IIIII]			M10	M12	
Brick n°2 – Hollow/perfo	rated bri	ck		With sleeve	With sleeve	With sleeve	
Admissible service load in	tensile	F [kN]			0,17		
Aumissible service load m		δ_{N0} [mm]		0,03			
Displacement					0.0 -		

Performance for static and quasi-static loads: Resistances

ETA-22/0353

ESSENTIAL CHARACTERISTI	CS	PERFORMANCE			
Displacement under service load Shear load	(T 14°C)	and 40°C to 190°C (T 50	°C)		
Rrick n°1 – Solid brick	$(1 \text{ mlp} = 24^{\circ} \text{C})$	$\frac{\text{and -40 °C to +80 °C (1 mlp = 50)}}{M8}$	M10	M12	
Admissible service load in shear	F [kN]		1,71		
	δ_{V0} [mm]		0,45		
Displacement	$\delta_{V\infty}[mm]$		0,68		
Brick n°2 – Hollow/perforated br	ick	M8 With sleeve	M10 With sleeve	M12 With sleeve	
Admissible service load in shear	F [kN]		1,00		
	δ _{V0} [mm]		1,15		
Displacement	$\delta_{V\infty}[mm]$		1,73		
Table C4: Reaction to fire.					
ESSENTIAL CHARACTERISTI	CS	PERFORMANCE			
Reaction to fire		In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.			
Table C5: Resistance to fire	2.	Γ			
ESSENTIAL CHARACTERISTI	CS	PERFORMANCE			
Resistance to fire		No performance assessed			
TCM MS PRO Performance for static and quasi-static loads: Resistances				Annex C4 of European	

Table C6: Terminology and symbols

TERN	/INOLOGY AND SYMBOLS
d	Diameter of anchor bolt or thread diameter
d ₀	Drill hole diameter
d _{fix}	Diameter of clearance hole in the fixture
h _{ef}	Effective anchorage depth
h1	Depth of the drilling hole
Tinst	Torque moment to installation
t _{fix}	Thickness to be fixed
Smin	Minimum allowable spacing
Cmin	Minimum allowable edge distance
N _{Rk}	Characteristic tensile resistance for single anchor
V _{Rk}	Characteristic shear resistance for single anchor
γMm	Partial safety factors
S _{cr,N}	Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge
	effects
C _{cr,N}	Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge
	effects
β	Factor according to EOTA TR 053
F	Service load
δ0	Short term displacement under service load
δ_{∞}	Long term displacement under service load
NPD	No performance declared

TCM MS PRO

Terminology and symbols

Annex C5 of European Technical Assessment ETA-22/0353