

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-20/0148 of 2020/02/07

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	TCM A ARCTIC Injection System for concrete
Product family to which the above construction product belongs:	Bonded injection type anchor for use in non-cracked concrete: Sizes M8 to M24, Rebar Ø8 to Ø25 mm
Manufacturer:	Trutek Fasteners Polska Sp z o.o. Al. Krakowska 38 Janki PL-05-090 Raszyn Tel. +48 22 701 93 24 Fax +48 22 100 58 82 Internet <u>www.trutek.com.pl</u>
Manufacturing plant:	Trutek Fasteners Polska Sp z o.o. Factory Plant 1
This European Technical Assessment contains:	20 pages including 15 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete"

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The TCM A ARCTIC is a bonded anchor (injection type) for concrete consisting of a cartridge with Trutek injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M24 or a reinforcing bar in the range of diameter Ø8 to Ø25 mm.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Requirements are not relevant.

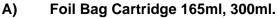
3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete" option 7.

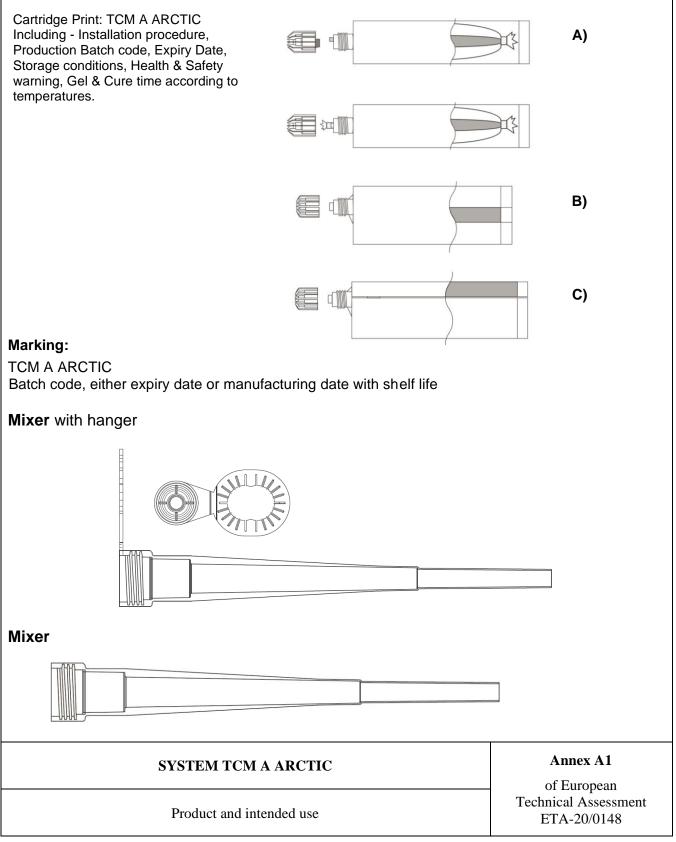
4 Assessment and verification of constancy of performance (AVCP)

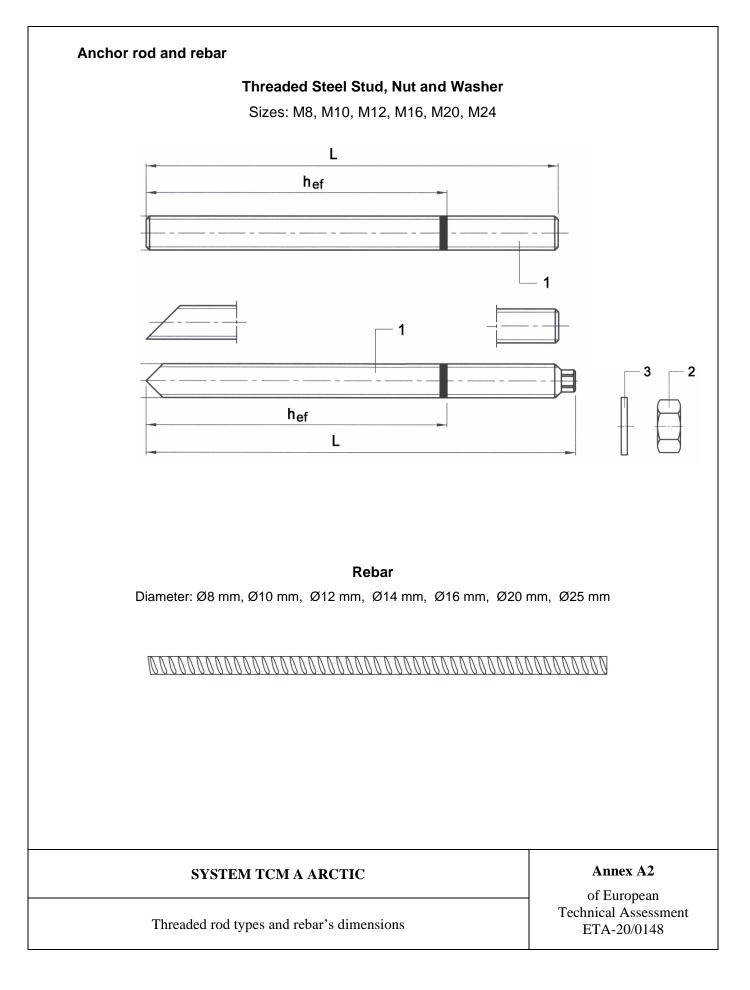
4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

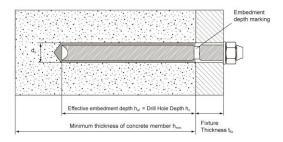

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

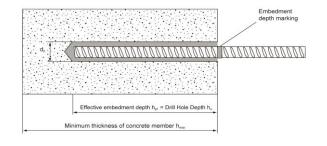
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.


Issued in Copenhagen on 2020-02-07 by


Thomas Bruun Managing Director, ETA-Danmark

- B) Coaxial Cartridge 380ml / 400 ml / 410 ml / 420ml
- C) Side by Side Cartridge 345ml, 825ml





Installed Anchor and Intended Use

Table A1: Installation details for anchor rods

Anchor size			M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Range of effective embedment depth hef	h _{ef,min}	[mm]	60	60	70	80	90	100
and drill hole depth h_0	h _{ef,max}	[mm]	96	120	144	192	240	288
Effective embedment depth	h _{ef}	[mm]	80	90	110	125	170	210
Nominal drill hole diameter	do	[mm]	10	12	14	18	24	28
Diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22	26
Maximum installation torque moment	Tinst,max	[Nm]	10	12	20	40	70	90
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30mm ≥ 100mm			h _{ef} + 2d _o		
Minimum spacing	Smin	[mm]	40	50	60	80	100	120
Minimum edge distance	Cmin	[mm]	40	50	60	80	100	120

Table A2: Installation details for rebar

Rebar size [mm]	-	-	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
Diameter of element	d	[mm]	8	10	12	14	16	20	25
Range of effective embedment depth hef	h _{ef,min}	[mm]	60	60	70	75	80	90	100
and drill hole depth h₀	h _{ef,max}	[mm]	96	120	144	168	192	240	288
Nominal drill hole diameter	d₀	[mm]	12	14	16	18	20	25	30
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} + 30mm ≥ 100mm			h _{ef} +	- 2d₀		
Minimum spacing	Smin	[mm]	40	50	60	70	80	100	120
Minimum edge distance	Cmin	[mm]	40	50	60	70	80	100	120

SYSTEM TCM A ARCTIC

Installation details for threaded studs and rebar

Annex A3

of European Technical Assessment ETA-20/0148

Designation	Material
Threaded rods made of z	inc coated steel
	Strength class 4.6 to 12.9 acc. EN ISO 898-1, ≥ 8% ductile
Threaded rod M8 – M24	Steel galvanized ≥ 5µm acc. EN ISO 4042
	Hot dipped galvanized ≥ 45µm acc. EN ISO 10684
Washer ISO 7089	Steel galvanized acc. EN ISO 4042; Hot dipped galvanized acc. EN ISO 10684
NI /	Strength class 8 acc. EN ISO 898-2
Nut	Steel galvanized ≥ 5µm acc. EN ISO 4042
EN ISO 4032	Hot dipped galvanized ≥ 45µm acc. EN ISO 10684
Threaded rods made of s	tainless steel
Threaded red MQ MQ4	Strength class 70 or 80 acc.EN ISO 3506-2; ≥ 8% ductile
Threaded rod M8 – M24	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 acc. EN 10088
Washer ISO 7089	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 acc. EN 10088
Nut	Strength class 70 and 80 acc. EN ISO 3506-1;
EN ISO 4032	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 acc. EN 10088
Threaded rods made of h	igh corrosion resistant steel
	Strength class 70 or 80 acc.EN ISO 3506-2; ≥ 8% ductile
Threaded rod M8 – M24	Class 70: f _{uk} = 700 N/mm ² ; f _{yk} =400 N/mm ²
	Class 80: f _{uk} = 800 N/mm ² ; f _{yk} = 640 N/mm ²
	High corrosion resistant steel 1.4529, 1.4565 acc. EN 10088
Washer ISO 7089	High corrosion resistant steel 1.4529, 1.4565 acc. EN 10088
Nut	Strength class 70 acc. EN ISO 3506-2;
EN ISO 4032	High corrosion resistant steel 1.4529, 1.4565 EN 10088
Rebars	
Rebars Ø8 to Ø25	class B and C of characteristic yield strength fyk from 400 N/mm ² to 600 N/mm ²

SYSTEM TCM A ARCTIC

Annex A4

Materials

of European Technical Assessment ETA-20/0148

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: M8 to M24, Rebar Ø8 to Ø25

Base materials:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non-cracked concrete: Sizes from M8 to M24 and Rebar Ø 8mm to Ø 25mm

Temperature range:

The anchors may be used in the following temperature range:

a) T: - 40 °C to + 40°C (max short term temperature + 40 °C and max long term temperature + 24 °C).

Use conditions (Environmental conditions):

Elements made of galvanized steel and stainless steel may be used in structures subject to the following conditions:

- Structures subject to dry internal conditions
- (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the

splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

The anchors may be installed in:

- Dry or wet concrete (use category 1)
- Flooded holes with the exception of seawater (use category 2)
- All the diameters may be used overhead
- The anchor is suitable for hammer drilled holes

Proposed design methods:

- Static and quasi-static load: EN 1992-4:2017 and EOTA Technical Report TR 055

SYSTEM TCM A ARCTIC

Annex B1

of European Technical Assessment ETA-20/0148

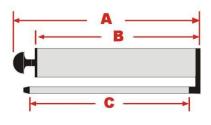

Intended use - Specification

Table B1: Installation data

Threaded rod and rebar	Nominal drill bit diameter d _{cut} [mm]		Steel Brush diameter d _b [mm]	Cleaning methods			
		8		Manual cleaning (MAC)	Compressed air cleaning (CAC)		
	M8	10	12	Yes … h _{ef} ≤ 80 mm			
Studs	M10	12	14	Yes h _{ef} ≤ 100 mm			
	M12	14	16	Yes h _{ef} ≤ 120 mm	Yes		
	M16	18	20	Yes h _{ef} ≤ 160 mm			
	M 20	22	26	Yes h _{ef} ≤ 200 mm			
	M 24	28	30	Yes h _{ef} ≤ 240 mm			
	Ø8 mm	12	14	Yes … h _{ef} ≤ 80 mm			
	Ø10 mm	14	16	Yes h _{ef} ≤ 100 mm			
Rebar	Ø12 mm	16	18	Yes h _{ef} ≤ 120 mm			
13133333333333333333	Ø14 mm	18	20	Yes h _{ef} ≤ 140 mm	Yes		
	Ø16 mm	20	22	Yes h _{ef} ≤ 160 mm			
	Ø20 mm	24	28	Yes h _{ef} ≤ 200 mm			
	Ø25 mm	32	34	Yes h _{ef} ≤ 240 mm			

Manual Cleaning (MAC):

Trutek hand pump recommended for Blowing out drill holes with diameters $d_0 \le 24$ mm and drill holes depth $h_0 \le 10d$

190mm (240x190x300mm)

- -(A) : 240mm (overall) -(B) : 190mm (Body)
- -(C) : 300mm (Tube)

280mm (330x280x300mm)

-(A) : 330mm (overall) -(B) : 280mm (Body) -(C) : 300mm (Tube)

400mm (420x370x350mm)

- -(A) : 420mm (overall) -(B) : 370mm (Body) -(C) : 350mm (Tube)
- -(C) . 350mm (Tube)

Compressed air cleaning (CAC): Recommended air nozzle with an Orifice opening of minimum 3,5 mm in diameter.

SYSTEM TCM A ARCTIC

Annex B2

of European Technical Assessment ETA-20/0148

Intended use - data

Base material temperature T [C°]	Maximum working time t _{gel} in dry/wet concrete	Minimum curing time t _{cure} in dry concrete	Minimum curing time t _{cure} in wet concrete
$-20^{\circ}C \leq T_{base material} < -10^{\circ}C$	4 hour	24 hour	48 hour
$-10^{\circ}C \leq T_{\text{base material}} < 0^{\circ}C$	45 min	16 hour	32 hour
$0^{\circ}C \leq T_{\text{base material}} < 10^{\circ}C$	15 min	150 min	300 min
$10^{\circ}C \leq T_{\text{base material}} < 20^{\circ}C$	5 min	60 min	120 min
$20^{\circ}C \leq T_{\text{base material}} < 30^{\circ}C$	3 min	30 min	60 min
$30^{\circ}C \leq T_{\text{base material}} \leq 40^{\circ}C$	2 min	20 min	40 min

Table B2: Maximum working time and minimum curing time

The temperature of the bond material must be ≥ -20°C

Image	Size Cartridge / Code	Туре
A	165 / 300ml 165 / 300 ml 10:1	Manual
	345 / 380 / 400 / 410 / 420ml 380 / 400 / 410 / 420 ml 10:1 345 ml 10:1	Manual
	165 / 300 / 345 / 380 / 400 / 410 / 420ml 165 / 300 ml 345ml 380 / 400 / 410 / 420 ml 7.4v Tool	Battery
	380 / 400 / 410 / 420 / 825ml 380 / 400 / 410 / 420 ml 825ml	Pneumatic

of European Technical Assessment ETA-20/0148

 $Intended \ use-data$

Table B3 - pa	rameters: Drillin	g, hole cleaning and installation					
Drill hole drilli	ng						
		Drill hole in the substrate to the required embedment depth using the appropriately sized carbide drill bit.					
Drill hole clear	ning Just before	setting an anchor, the drill hole must be free of dus	st and debris.				
a) Manual air d	cleaning (MAC) fo	r all drill hole diameters $d_o \le 24$ mm and bore hole of	depth h₀≤ 10d				
	X 4	The Trutek manual pump shall be used for blowin diameters $d_0 \le 24$ mm and embedment depths up Blow out at least 4 times from the back of the drill needed.	o to h _{ef} ≤ 10d.				
	X 4	Brush 4 times with the specified brush size (see T Trutek steel brush to the back of the hole (if need twisting motion and removing it.					
	X 4	Blow out again with manual pump at least 4 times.					
b) Compresse	d air cleaning (CA	C) for all drill hole diameters d _o and all drill hole do	epths				
6 Bar	X 2	Blow 2 times from the back of the hole (if needed with a nozzle extension) the whole length with oil-free compressed air (min. 6 bar at 6 m ³ /h).					
	X 2	Brush 2 times with the specified brush size (see Table B1) by inserting the Trutek steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.					
6 Bar	X 2	Blow out again with compressed air at least 2 times.					
	SYSTE	CM TCM A ARCTIC	Annex B4				
		Procedure (1)	of European Technical Assessment ETA-20/0148				

Table B4 - parameters: drill	ing, hole cleaning and installation								
	Remove the threaded cap from the cartridge. C necessary.	ut open the foil bag if							
+ + +	Tightly attach the mixing nozzle. Do not modify sure the mixing element is inside the mixer. Use every working interruption longer than the recor B2) as well as for new cartridges, a new mixer s	e only the supplied mixer. For nmended working time (Table							
	Insert the cartridge into the Trutek dispenser gun.								
X AL	Discard the initial trigger pulls of adhesive. Depo cartridge, an initial amount of adhesive mix mus Discard quantities are 10 cm for all cartridges								
→ →	Inject the adhesive starting at the back of the homixer with each trigger pull. Fill holes approximately 2/3 full, to ensure that the anchor and the concrete is completely filled with embedment depth.	he annular gap between the							
	Before use, verify that the threaded rod is dry an Install the threaded rod to the required embedm working time tgel has elapsed. The working time	ent depth during the open							
	The anchor can be loaded after the required curing time t _{cure} (see Table B The applied torque shall not exceed the values T _{inst,max} given in Table A1.								
SYSTE	M TCM A ARCTIC	Annex B5							
	Procedure (2)	of European Technical Assessment ETA-20/0148							

Table C1: Design method A, characteristic tension load values

TCM A ARCTIC with threaded rods			M8	M10	M12	M16	M20	M24		
Steel failure										
Characteristic resistance, class 4.6 and 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141		
Characteristic resistance, class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176		
Characteristic resistance, class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282		
Characteristic resistance, class 10.9	N _{Rk,s}	[kN]	38	60	87	163	255	367		
Characteristic resistance, class 12.9	N _{Rk,s}	[kN]	44	70	103	190	299	431		
Characteristic resistance, A2, A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	78	122	176		
Characteristic resistance, A2, A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247		
Characteristic resistance, A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282		
Partial safety factor 4.6 and 5.6	γ _{Ms,N} 1)	[-]				2				
Partial safety factor 4.8, 5.8, 8.8, 10.9 and 12.9	γms,n ¹⁾	[-]				1,5				
Partial safety factor A2, A4 and HCR class 70	γms,N ¹⁾	[-]				1,87				
Partial safety factor A2, A4 and HCR class 80	γMs,N ¹⁾	[-]				1,60				
Combined Pull-out and Concrete cone failu										
Diameter of threaded rod	d	[mm]	8	10	12	16	20	24		
Characteristic bond resistance in non-cracked	-		-	-			-			
Temperature range a ³⁾ : 40°C/24°C	τRk,ucr	[N/mm²]	7	7	6.5	6.5	6	5.5		
Partial safety factor – dry or wet concrete	γinst	[-]		1,2	I		1,4	1		
Characteristic bond resistance in non-cracked	concrete C20/2	5 – flooded h	noles							
Temperature range a ³⁾ : 40°C/24°C	τRk,ucr	[N/mm²]	7	7	6.5	6	5	4.5		
Partial safety factor – flooded holes	$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]	1	,2		1	,4			
	үмр — үмс 🗡	C30/37		,2	1		, -			
Increasing factor for $\tau_{Rk,ucr}$		C40/50	1,0							
in non-cracked concrete	Ψc	C50/60								
Easter for determination of the second		000/00	11	(hacad		1,0				
Factor for determination of the concrete cone failure	k _{ucr,N}	[-]		 11,0 (based on concrete cylinder strength f_{ck}) 10,1 (based on concrete strength f_{ck,cube}) 						
Splitting failure ²⁾				- , - (J - ok,oube,	,		
		4) > 0.0	4.01	h/l	ו _{ef} ↑					
	h/i	n _{ef} ⁴⁾ ≥ 2,0	1,01	Դ _{ef} 2,	0 -					
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} ⁴⁾ > 1,3	3 h _{ef} -	1 h						
			-	1,	3 -					
	h /	h _{ef} ⁴⁾ ≤ 1,3	1.7	Jef				C _{cr,sp}		
Specing	-	[]				1,0 ⋅ h _{ef}	1,7 ∙h _{et}	f.,sp		
Spacing ¹⁾ In absence of national regulations ²⁾ Calculation of concrete and splitting, see ³⁾ Explanations, see annex B1	S _{cr,sp} e annex B1	[mm] ⁴⁾ h= cone depth	crete me	ember thio		$2 C_{cr,sp}$ lef = effec	tive emb	edment		
SYSTEM TC	M A ARCTI	IC					Annex (C1		
Performance for static and q			ances			o Techn	f Europe ical Ass ΓΑ-20/0	ean essmen		

CM A ARCTIC w	ith threaded rods	M8	M10	M12	M16	M20	M24
emperature range	a ⁵⁾ : 40°C / 24°C						
Displacement	δ _{N0} [mm/(N/mm ²)]	0.03	0,04	0,04	0,04	0,09	0,30
Displacement ⁵⁾ Explanation see	$\delta_{N\infty}$ [mm/(N/mm ²)]] -	-	0,15	-	-	-
	SYSTEM TCM A					Annex	

Performance for static, quasi-static: Displacements

Annex C2 of European Technical Assessment ETA-20/0148 Γ

TCM A ARCTIC with threaded rods	M8	M10	M12	M16	M20	M24		
Steel failure without lever arm								
Characteristic resistance, class 4.6 and 48	V _{Rk,s}	[kN]	7	12	17	31	49	70
Characteristic resistance, class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88
Characteristic resistance, class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141
Characteristic resistance, class 10.9	$V_{Rk,s}$	[kN]	19	30	43	81	127	183
Characteristic resistance, class 12.9	$V_{Rk,s}$	[kN]	22	35	51	95	149	215
Characteristic resistance, A2, A4 and HCR, Property class 50	V _{Rk,s}	[kN]	9	15	21	39	61	88
Characteristic resistance, A2, A4 and HCR, Property class 70	V _{Rk,s}	[kN]	13	20	30	55	86	124
Characteristic resistance, A4 and HCR, Property class 80	V _{Rk,s}	[kN]	15	23	34	63	98	141
Steel failure with lever arm								
Characteristic resistance, class 4.6 and 4.8	M^0 Rk,s	[Nm]	15	30	52	133	260	449
Characteristic resistance, class 5.6 and 5.8	M^0 Rk,s	[Nm]	19	37	65	166	324	560
Characteristic resistance, class 8.8	M^0 Rk,s	[Nm]	30	60	105	266	519	896
Characteristic resistance, class 10.9	M^0 Rk,s	[Nm]	37	75	131	333	649	1123
Characteristic resistance, class 12.9	M^0 Rk,s	[Nm]	45	90	157	400	779	1347
Characteristic resistance, A2, A4, HCR -50	M^0 Rk,s	[Nm]	19	37	65	166	324	560
Characteristic resistance, A2, A4, HCR -70	M^0 Rk,s	[Nm]	26	52	95	232	454	784
Characteristic resistance, A4, HCR - 80	M^0 Rk,s	[Nm]	30	59	105	266	519	896
Partial safety factor steel failure								
Steel, Property class 4.6 or 5.6	γMs,V ¹⁾	[-]			1,	67		
Steel, Property class 4.8, 5.8 or 8.8	γMs,V ¹⁾	[-]			1,:	25		
Steel, Property class 10.9 or 12.9	γ _{Ms,V} 1)	[-]			1,	50		
Stainless steel A2, A4 or HCR Property class 50	γMs,v ¹⁾	[-]			2,	38		
Stainless steel A2, A4 or HCR Property class 70	γMs,v ¹⁾	[-]			1,	56		
Stainless steel A4 or HCR Property class 80	γMs,v ¹⁾	[-]			1,	33		
Concrete pryout failure								
Factor	k ₈	[-]		,0 ,0	for h _{ef} < for h _{ef} ≥	: 60mm : 60mm		
Partial safety factor	γMc ¹⁾	[-]			1,	5		
Concrete edge failure								
Partial safety factor	γ Mc $^{1)}$	[-]			1,	5		
1) In absence of national regulations								

TCM A ARCTIC with threaded	rods	M8	M10	M12	M16	M20	M24
Displacement δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement $\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05

SYSTEM TCM A ARCTIC

Performance for static, quasi-static: Resistances, Displacements

Annex C3 of European Technical Assessment ETA-20/0148

TCM A ARCTIC with reba	ar		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Steel failure		•		<u>-</u>		-	<u> </u>		
Characteristic tension resistance	N _{Rk,s}	[kN]			ŀ	$A_s \cdot f_{uk}^{1)}$			
Cross section area	As	[mm ²]	50	79	113	201	314	491	
Partial safety factor	γMs,N ²⁾	[-]				1,4			
Combined Pull-out and Conc	crete cone fa	ilure ³⁾							
Diameter of rebar	d	[mm]	8	10	12	16	20	25	
Characteristic bond resistance	in non-cracke	ed concrete C	20/25 – dry	or wet concre	ete				
Temperature range a ⁴⁾ : 40°C/24°C	τRk,ucr	[N/mm²]	5.5	5.5	5.5	5	5	5	
Partial safety factor – dry or wet concrete	$\gamma_{inst}^{2)}$	[-]	1,2				1,4		
Characteristic bond resistance	in non-cracke	ed concrete C	20/25 – floc	ded holes					
Temperature range a ⁴⁾ : 40°C/24°C	$\tau_{Rk,ucr}$	[N/mm²]	5.5	5.5	5.5	5	4.5	4	
Partial safety factor – flooded holes	γinst	[-]	1,2		1,4				
	_	C30/37	-	1,0			1,1	-	
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked concrete	ψc	C40/50	1,0		1,1			1,2	
		C50/60	1,0	1,1		1,2		1,3	
Splitting failure ³⁾					. /				
	h/	′ h _{ef} ⁵⁾ ≥ 2,0	1,0	h _{ef}	h/h _{ef}				
Edge distance c _{cr,sp} [mm] for	2,0 > h	/ h _{ef} ⁵⁾ > 1,3							
	h	/ h _{ef} ⁵⁾ ≤ 1,3	1.7	h _{ef}	1	1,0 ⋅h _{ef}	, 1,7 ⋅h _{ef}	C _{cr,sp}	
Spacing	S _{cr,sp}	[mm]				2 Ccr,sp	ः स		

 $^{1)}\,f_{\text{uk}}$ shall be taken from the specifications of reinforcing bars $^{2)}\,$ in absence of national regulation

³⁾ Calculation of concrete and splitting, see annex B1

⁴⁾ Explanations, see annex B1

⁵⁾ h = concrete member thickness, h_{ef} = effective embedment depth

Table C6: Displacements under tension load

TCM A ARCTIC with rebar			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Temperature range a ⁴⁾ : 40°C / 24°C								
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,03	0,03	0,04	0,07	0,07	0,10
Displacement	δ _{N∞}	[mm/(N/mm ²)]	-	-	0,15	-	-	-

SYSTEM TCM A ARCTIC

Performance for static and quasi-static loads: Resistances, Displacements

Annex C4 of European **Technical Assessment** ETA-20/0148

TCM A ARCTIC with rebar			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Steel failure without lever arm					<u>.</u>	•		-
Characteristic shear resistance	V _{Rk,s}	[kN]			0,50 · A	$A_{s} \cdot f_{uk}^{1)}$		
Cross section area	As	[mm ²]	50	79	113	201	314	491
Partial safety factor	γms,n ²⁾	[-]				1,5		
Steel failure with lever arm								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	$1.2 \cdot W_{el} \cdot f_{uk}^{(1)}$					
Elastic section modulus	W _{el}	[Nm]	50	98	170	402	785	1534
Partial safety factor	γMs,N ²⁾	[-]				1,5		
Concrete pryout failure								
Factor	k ₈	[-]	1,0for $h_{ef} < 60mm$ 2,0for $h_{ef} \ge 60mm$					
Partial safety factor	үмс	[-]	1,5					
Concrete edge failure								
Partial safety factor	γMc ¹⁾	[-]			1	,5		

 $^{1)}\,\rm f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ In absence of national regulations

Table C8: Displacements under shear load

TCM A ARCTIC	with rebar		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Displacement	δ _{V0}	[mm/kN]	0,05	0,05	0,05	0,04	0,04	0,03
Displacement	δ _{V∞}	[mm/kN]	0,08	0,08	0,07	0,06	0,05	0,05

SYSTEM TCM A ARCTIC

Performance for static and quasi-static loads: Resistances, Displacements

Annex C5 of European Technical Assessment ETA-20/0148

Table C9: Resistance to fire	
ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	NPD

Table C10: Reaction to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application, the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not contribute to fire growth or to the fully developed fire and they have no influence to the smoke hazard.

SYSTEM TCM A ARCTIC

Performance for exposure to fire

Annex C6 of European Technical Assessment ETA-20/0148